File size: 17,671 Bytes
9e15541
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
import time
from datetime import datetime
from pathlib import Path
from typing import Any

from omegaconf import OmegaConf

import ignite.distributed as idist
import numpy as np
import torch
from torch.utils.data import DataLoader
from ignite.contrib.engines import common
from ignite.contrib.handlers import TensorboardLogger
from ignite.engine import Engine, Events, EventsList
from ignite.handlers import Checkpoint, DiskSaver, global_step_from_engine
from ignite.utils import manual_seed, setup_logger
from torch.cuda.amp import autocast, GradScaler

from scenedino.common.logging import event_list_from_config, global_step_fn, log_basic_info
from scenedino.common.io.configs import save_hydra_config
from scenedino.common.io.model import load_checkpoint
from scenedino.evaluation.wrapper import make_eval_fn
from scenedino.losses.base_loss import BaseLoss
from scenedino.training.handlers import (
    MetricLoggingHandler,
    VisualizationHandler,
    add_time_handlers,
)

from scenedino.common.array_operations import to
from scenedino.common.metrics import DictMeanMetric, MeanMetric, SegmentationMetric, ConcatenateMetric
from scenedino.visualization.vis_2d import tb_visualize

import optuna


def base_training(local_rank, config, get_dataflow, initialize, sweep_trial=None):
    # ============================================ LOGGING AND OUTPUT SETUP ============================================
    # TODO: figure out rank
    rank = (
        idist.get_rank()
    )  ## rank of the current process within a group of processes: each process could handle a unique subset of the data, based on its rank
    manual_seed(config["seed"] + rank)
    device = idist.device()

    model_name = config["name"]
    logger = setup_logger(
        name=model_name, format="%(levelname)s: %(message)s"
    )  ## default

    output_path = config["output"]["path"]
    if rank == 0:
        unique_id = config["output"].get(
            "unique_id", datetime.now().strftime("%Y%m%d-%H%M%S")
        )
        folder_name = unique_id
        # folder_name = f"{model_name}_backend-{idist.backend()}-{idist.get_world_size()}_{unique_id}"

        output_path = Path(output_path) / folder_name
        if not output_path.exists():
            output_path.mkdir(parents=True)

        config["output"]["path"] = output_path.as_posix()
        logger.info(f"Output path: {config['output']['path']}")

        if "cuda" in device.type:
            config["cuda device name"] = torch.cuda.get_device_name(local_rank)
    log_basic_info(logger, config)
    tb_logger = TensorboardLogger(log_dir=output_path)

    # ================================================== DATASET SETUP =================================================
    # TODO: think about moving the dataset setup to the create validators and create trainer functions
    train_loader, val_loaders = get_dataflow(config)

    if isinstance(train_loader, tuple):
        train_loader = train_loader[0]

    if hasattr(train_loader, "dataset"):
        val_loader_lengths = "\n".join(
            [
                f"{name}: {len(val_loader.dataset)}"
                for name, val_loader in val_loaders.items()
                if hasattr(val_loader, "dataset")
            ]
        )
        logger.info(
            f"Dataset lengths:\nTrain: {len(train_loader.dataset)}\n{val_loader_lengths}"
        )
    config["dataset"]["steps_per_epoch"] = len(train_loader)

    # ============================================= MODEL AND OPTIMIZATION =============================================
    model, optimizer, criterion, lr_scheduler = initialize(config)
    logger.info(f"Model parameters: {sum(p.numel() for p in model.parameters())}")
    logger.info(f"Trainable model parameters: {sum(p.numel() for p in model.parameters() if p.requires_grad)}")

    # Create trainer for current task
    trainer = create_trainer(
        model,
        optimizer,
        criterion,
        lr_scheduler,
        train_loader.sampler if hasattr(train_loader, "sampler") else None,
        config,
        logger,
        metrics={},
    )
    if rank == 0:
        tb_logger.attach(
            trainer,
            MetricLoggingHandler("train", optimizer),
            Events.ITERATION_COMPLETED(every=config.get("log_every_iters", 1)),
        )

    # ========================================= EVALUTATION, AND VISUALIZATION =========================================
    validators: dict[str, tuple[Engine, EventsList]] = create_validators(
        config,
        model,
        val_loaders,
        criterion,
        tb_logger,
        trainer,
    )

    # NOTE: not super elegant as val_loaders has to have the same name but should work
    def run_validation(name: str, validator: Engine):
        def _run(engine: Engine):
            epoch = trainer.state.epoch
            state = validator.run(val_loaders[name])
            log_metrics(logger, epoch, state.times["COMPLETED"], name, state.metrics)

            if sweep_trial is not None and name == "validation":
                sweep_trial.report(trainer.state.best_metric, trainer.state.iteration)
                if sweep_trial.should_prune():
                    raise optuna.TrialPruned()

        return _run

    for name, validator in validators.items():
        trainer.add_event_handler(validator[1], run_validation(name, validator[0]))

    # ================================================ SAVE FINAL CONFIG ===============================================
    if rank == 0:
        # Plot config to tensorboard
        config_yaml = OmegaConf.to_yaml(config)
        config_yaml = "".join("\t" + line for line in config_yaml.splitlines(True))
        tb_logger.writer.add_text("config", text_string=config_yaml, global_step=0)
    save_hydra_config(output_path / "training_config.yaml", config, force=False)

    # ================================================= TRAINING LOOP ==================================================
    # In order to check training resuming we can stop training on a given iteration
    if config.get("stop_iteration", None):

        @trainer.on(Events.ITERATION_STARTED(once=config["stop_iteration"]))
        def _():
            logger.info(f"Stop training on {trainer.state.iteration} iteration")
            trainer.terminate()

    try:  ## train_loader == models.bts.trainer_overfit.DataloaderDummy object
        trainer.run(train_loader,
                    max_epochs=config["training"]["num_epochs"],
                    epoch_length=config["training"].get("epoch_length", None))
    except Exception as e:
        logger.exception("")
        raise e

    if rank == 0:
        tb_logger.close()

    return trainer.state.best_metric


def log_metrics(logger, epoch, elapsed, tag, metrics):
    metrics_output = "\n".join([f"\t{k}: {v}" for k, v in metrics.items()])
    logger.info(
        f"\nEpoch {epoch} - Evaluation time (seconds): {elapsed:.2f} - {tag} metrics:\n {metrics_output}"
    )


def create_trainer(
    model: torch.nn.Module,
    optimizer: torch.optim.Optimizer,
    criterions: list[Any],
    lr_scheduler,
    train_sampler,
    config,
    logger,
    metrics={},
):
    device = idist.device()
    model = model.to(device)

    # Setup Ignite trainer:
    # - let's define training step
    # - add other common handlers:
    #    - TerminateOnNan,
    #    - handler to setup learning rate scheduling,
    #    - ModelCheckpoint
    #    - RunningAverage` on `train_step` output
    #    - Two progress bars on epochs and optionally on iterations

    with_amp = config["with_amp"]
    gradient_accum_factor = config.get("gradient_accum_factor", 1)

    scaler = GradScaler(enabled=with_amp)

    def train_step(engine, data: dict):
        if "t__get_item__" in data:
            timing = {"t__get_item__": torch.mean(data["t__get_item__"]).item()}
        else:
            timing = {}

        _start_time = time.time()

        data = to(data, device)

        timing["t_to_gpu"] = time.time() - _start_time

        model.train()
        model.validation_tag = None

        _start_time = time.time()

        with autocast(enabled=with_amp):
            data = model(data)

        timing["t_forward"] = time.time() - _start_time

        loss_metrics = {}
        if optimizer is not None:
            _start_time = time.time()
            overall_loss = torch.tensor(0.0, device=device)
            for criterion in criterions:
                losses = criterion(data)
                names = criterion.get_loss_metric_names()

                overall_loss += losses[names[0]]
                loss_metrics.update({name: loss for name, loss in losses.items()})

            timing["t_loss"] = time.time() - _start_time

            ## make same scale for gradients. Note: it's not ignite built-in func. (c.f. https://wandb.ai/wandb_fc/tips/reports/How-To-Use-GradScaler-in-PyTorch--VmlldzoyMTY5MDA5)
            _start_time = time.time()

            # optimizer.zero_grad()
            # scaler.scale(overall_loss).backward()
            # scaler.step(optimizer)
            # scaler.update()

            # Gradient accumulation
            overall_loss = overall_loss / gradient_accum_factor
            scaler.scale(overall_loss).backward()
            if engine.state.iteration % gradient_accum_factor == 0:
                scaler.step(optimizer)
                scaler.update()
                optimizer.zero_grad()

            timing["t_backward"] = time.time() - _start_time

        return {
            "output": data,
            "loss_dict": loss_metrics,
            "timings_dict": timing,
            "metrics_dict": {},
        }

    trainer = Engine(train_step)
    trainer.logger = logger

    for name, metric in metrics.items():
        metric.attach(trainer, name)

    # TODO: maybe save only the network not the whole wrapper
    # TODO: Make adaptable
    to_save = {
        "trainer": trainer,
        "model": model,
        # "optimizer": optimizer,
        # "lr_scheduler": lr_scheduler,
    }

    common.setup_common_training_handlers(
        trainer=trainer,
        train_sampler=train_sampler,
        to_save=to_save,
        save_every_iters=config["training"]["checkpoint_every"],
        save_handler=DiskSaver(config["output"]["path"], require_empty=False),
        lr_scheduler=lr_scheduler,
        output_names=None,
        with_pbars=False,
        clear_cuda_cache=False,
        log_every_iters=config.get("log_every_iters", 100),
        n_saved=1,
    )

    # NOTE: don't move to initialization, as to save is also needed here
    if config["training"].get("resume_from", None):
        ckpt_path = Path(config["training"]["resume_from"])
        logger.info(f"Resuming from checkpoint: {str(ckpt_path)}")

        load_checkpoint(ckpt_path, to_save, strict=False)

    if config["training"].get("from_pretrained", None):
        ckpt_path = Path(config["training"]["from_pretrained"])
        logger.info(f"Pretrained from checkpoint: {str(ckpt_path)}")

        to_save = {"model": to_save["model"]}

        load_checkpoint(ckpt_path, to_save, strict=False)

    if idist.get_rank() == 0:
        common.ProgressBar(desc=f"Training", persist=False).attach(trainer)

    return trainer


def create_validators(
    config,
    model: torch.nn.Module,
    dataloaders: dict[str, DataLoader],
    criterions: list[BaseLoss],
    tb_logger: TensorboardLogger,
    trainer: Engine,
) -> dict[str, tuple[Engine, EventsList]]:
    # TODO: change model object to evaluator object that has a different ray sampler
    with_amp = config["with_amp"]
    device = idist.device()

    def _create_validator(
        tag: str,
        validation_config,
    ) -> tuple[Engine, EventsList]:
        # TODO: make eval functions configurable from config
        metrics = {}
        for metric_config in validation_config["metrics"]:
            agg_type = metric_config.get("agg_type", None)
            if agg_type == "unsup_seg":
                metrics[metric_config["type"]] = SegmentationMetric(
                    metric_config["type"], make_eval_fn(model, metric_config), assign_pseudo=True
                )
            elif agg_type == "sup_seg":
                metrics[metric_config["type"]] = SegmentationMetric(
                    metric_config["type"], make_eval_fn(model, metric_config), assign_pseudo=False
                )
            elif agg_type == "concat":
                metrics[metric_config["type"]] = ConcatenateMetric(
                    metric_config["type"], make_eval_fn(model, metric_config)
                )
            else:
                metrics[metric_config["type"]] = DictMeanMetric(
                    metric_config["type"], make_eval_fn(model, metric_config)
                )

        loss_during_validation = validation_config.get("log_loss", True)
        if loss_during_validation:
            metrics_loss = {}
            for criterion in criterions:
                metrics_loss.update(
                    {
                        k: MeanMetric((lambda y: lambda x: x["loss_dict"][y])(k))
                        for k in criterion.get_loss_metric_names()
                    }
                )
            eval_metrics = {**metrics, **metrics_loss}
        else:
            eval_metrics = metrics

        @torch.no_grad()
        def validation_step(engine: Engine, data):
            model.eval()
            model.validation_tag = tag
            if "t__get_item__" in data:
                timing = {"t__get_item__": torch.mean(data["t__get_item__"]).item()}
            else:
                timing = {}

            data = to(data, device)

            with autocast(enabled=with_amp):
                data = model(data)

            overall_loss = torch.tensor(0.0, device=device)
            loss_metrics = {}
            if loss_during_validation:
                for criterion in criterions:
                    losses = criterion(data)
                    names = criterion.get_loss_metric_names()

                    overall_loss += losses[names[0]]
                    loss_metrics.update({name: loss for name, loss in losses.items()})
            else:
                loss_metrics = {}

            return {
                "output": data,
                "loss_dict": loss_metrics,
                "timings_dict": timing,
                "metrics_dict": {},
            }

        validator = Engine(validation_step)

        add_time_handlers(validator)

        # ADD METRICS
        for name, metric in eval_metrics.items():
            metric.attach(validator, name)

        # ADD LOGGING HANDLER
        # TODO: split up handlers
        tb_logger.attach(
            validator,
            MetricLoggingHandler(
                tag,
                log_loss=False,
                global_step_transform=global_step_fn(
                    trainer, validation_config["global_step"]
                ),
            ),
            Events.EPOCH_COMPLETED,
        )

        # ADD VISUALIZATION HANDLER
        if validation_config.get("visualize", None):
            visualize = tb_visualize(
                (model.renderer.net if hasattr(model, "renderer") else model.module.renderer.net),
                dataloaders[tag].dataset.dataset,
                validation_config["visualize"],
            )

            def vis_wrapper(*args, **kwargs):
                with autocast(enabled=with_amp):
                    return visualize(*args, **kwargs)

            tb_logger.attach(
                validator,
                VisualizationHandler(
                    tag=tag,
                    visualizer=vis_wrapper,
                    global_step_transform=global_step_fn(
                        trainer, validation_config["global_step"]
                    ),
                ),
                Events.ITERATION_COMPLETED(every=1),
            )

        if "save_best" in validation_config:
            save_best_config = validation_config["save_best"]
            metric_name = save_best_config["metric"]
            sign = save_best_config.get("sign", 1.0)
            update_model = save_best_config.get("update_model", False)
            dry_run = save_best_config.get("dry_run", False)

            best_model_handler = Checkpoint(
                {"model": model},
                # NOTE: fixes a problem with log_dir or logdir
                DiskSaver(Path(config["output"]["path"]), require_empty=False),
                # DiskSaver(tb_logger.writer.log_dir, require_empty=False),
                filename_prefix=f"{metric_name}_best",
                n_saved=1,
                global_step_transform=global_step_from_engine(trainer),
                score_name=metric_name,
                score_function=Checkpoint.get_default_score_fn(
                    metric_name, score_sign=sign
                ),
            )

            def event_handler(engine):
                if update_model:
                    model.update_model_eval(engine.state.metrics)
                if not dry_run:
                    best_model_handler(engine)
                    trainer.state.best_metric = best_model_handler._saved[0].priority
                
            validator.add_event_handler(Events.COMPLETED, event_handler)

        if idist.get_rank() == 0 and (not validation_config.get("with_clearml", False)):
            common.ProgressBar(desc=f"Evaluation ({tag})", persist=False).attach(
                validator
            )

        return validator, event_list_from_config(validation_config["events"])

    return {
        name: _create_validator(name, config)
        for name, config in config["validation"].items()
    }