Spaces:
Running
on
Zero
Running
on
Zero
File size: 17,671 Bytes
9e15541 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 |
import time
from datetime import datetime
from pathlib import Path
from typing import Any
from omegaconf import OmegaConf
import ignite.distributed as idist
import numpy as np
import torch
from torch.utils.data import DataLoader
from ignite.contrib.engines import common
from ignite.contrib.handlers import TensorboardLogger
from ignite.engine import Engine, Events, EventsList
from ignite.handlers import Checkpoint, DiskSaver, global_step_from_engine
from ignite.utils import manual_seed, setup_logger
from torch.cuda.amp import autocast, GradScaler
from scenedino.common.logging import event_list_from_config, global_step_fn, log_basic_info
from scenedino.common.io.configs import save_hydra_config
from scenedino.common.io.model import load_checkpoint
from scenedino.evaluation.wrapper import make_eval_fn
from scenedino.losses.base_loss import BaseLoss
from scenedino.training.handlers import (
MetricLoggingHandler,
VisualizationHandler,
add_time_handlers,
)
from scenedino.common.array_operations import to
from scenedino.common.metrics import DictMeanMetric, MeanMetric, SegmentationMetric, ConcatenateMetric
from scenedino.visualization.vis_2d import tb_visualize
import optuna
def base_training(local_rank, config, get_dataflow, initialize, sweep_trial=None):
# ============================================ LOGGING AND OUTPUT SETUP ============================================
# TODO: figure out rank
rank = (
idist.get_rank()
) ## rank of the current process within a group of processes: each process could handle a unique subset of the data, based on its rank
manual_seed(config["seed"] + rank)
device = idist.device()
model_name = config["name"]
logger = setup_logger(
name=model_name, format="%(levelname)s: %(message)s"
) ## default
output_path = config["output"]["path"]
if rank == 0:
unique_id = config["output"].get(
"unique_id", datetime.now().strftime("%Y%m%d-%H%M%S")
)
folder_name = unique_id
# folder_name = f"{model_name}_backend-{idist.backend()}-{idist.get_world_size()}_{unique_id}"
output_path = Path(output_path) / folder_name
if not output_path.exists():
output_path.mkdir(parents=True)
config["output"]["path"] = output_path.as_posix()
logger.info(f"Output path: {config['output']['path']}")
if "cuda" in device.type:
config["cuda device name"] = torch.cuda.get_device_name(local_rank)
log_basic_info(logger, config)
tb_logger = TensorboardLogger(log_dir=output_path)
# ================================================== DATASET SETUP =================================================
# TODO: think about moving the dataset setup to the create validators and create trainer functions
train_loader, val_loaders = get_dataflow(config)
if isinstance(train_loader, tuple):
train_loader = train_loader[0]
if hasattr(train_loader, "dataset"):
val_loader_lengths = "\n".join(
[
f"{name}: {len(val_loader.dataset)}"
for name, val_loader in val_loaders.items()
if hasattr(val_loader, "dataset")
]
)
logger.info(
f"Dataset lengths:\nTrain: {len(train_loader.dataset)}\n{val_loader_lengths}"
)
config["dataset"]["steps_per_epoch"] = len(train_loader)
# ============================================= MODEL AND OPTIMIZATION =============================================
model, optimizer, criterion, lr_scheduler = initialize(config)
logger.info(f"Model parameters: {sum(p.numel() for p in model.parameters())}")
logger.info(f"Trainable model parameters: {sum(p.numel() for p in model.parameters() if p.requires_grad)}")
# Create trainer for current task
trainer = create_trainer(
model,
optimizer,
criterion,
lr_scheduler,
train_loader.sampler if hasattr(train_loader, "sampler") else None,
config,
logger,
metrics={},
)
if rank == 0:
tb_logger.attach(
trainer,
MetricLoggingHandler("train", optimizer),
Events.ITERATION_COMPLETED(every=config.get("log_every_iters", 1)),
)
# ========================================= EVALUTATION, AND VISUALIZATION =========================================
validators: dict[str, tuple[Engine, EventsList]] = create_validators(
config,
model,
val_loaders,
criterion,
tb_logger,
trainer,
)
# NOTE: not super elegant as val_loaders has to have the same name but should work
def run_validation(name: str, validator: Engine):
def _run(engine: Engine):
epoch = trainer.state.epoch
state = validator.run(val_loaders[name])
log_metrics(logger, epoch, state.times["COMPLETED"], name, state.metrics)
if sweep_trial is not None and name == "validation":
sweep_trial.report(trainer.state.best_metric, trainer.state.iteration)
if sweep_trial.should_prune():
raise optuna.TrialPruned()
return _run
for name, validator in validators.items():
trainer.add_event_handler(validator[1], run_validation(name, validator[0]))
# ================================================ SAVE FINAL CONFIG ===============================================
if rank == 0:
# Plot config to tensorboard
config_yaml = OmegaConf.to_yaml(config)
config_yaml = "".join("\t" + line for line in config_yaml.splitlines(True))
tb_logger.writer.add_text("config", text_string=config_yaml, global_step=0)
save_hydra_config(output_path / "training_config.yaml", config, force=False)
# ================================================= TRAINING LOOP ==================================================
# In order to check training resuming we can stop training on a given iteration
if config.get("stop_iteration", None):
@trainer.on(Events.ITERATION_STARTED(once=config["stop_iteration"]))
def _():
logger.info(f"Stop training on {trainer.state.iteration} iteration")
trainer.terminate()
try: ## train_loader == models.bts.trainer_overfit.DataloaderDummy object
trainer.run(train_loader,
max_epochs=config["training"]["num_epochs"],
epoch_length=config["training"].get("epoch_length", None))
except Exception as e:
logger.exception("")
raise e
if rank == 0:
tb_logger.close()
return trainer.state.best_metric
def log_metrics(logger, epoch, elapsed, tag, metrics):
metrics_output = "\n".join([f"\t{k}: {v}" for k, v in metrics.items()])
logger.info(
f"\nEpoch {epoch} - Evaluation time (seconds): {elapsed:.2f} - {tag} metrics:\n {metrics_output}"
)
def create_trainer(
model: torch.nn.Module,
optimizer: torch.optim.Optimizer,
criterions: list[Any],
lr_scheduler,
train_sampler,
config,
logger,
metrics={},
):
device = idist.device()
model = model.to(device)
# Setup Ignite trainer:
# - let's define training step
# - add other common handlers:
# - TerminateOnNan,
# - handler to setup learning rate scheduling,
# - ModelCheckpoint
# - RunningAverage` on `train_step` output
# - Two progress bars on epochs and optionally on iterations
with_amp = config["with_amp"]
gradient_accum_factor = config.get("gradient_accum_factor", 1)
scaler = GradScaler(enabled=with_amp)
def train_step(engine, data: dict):
if "t__get_item__" in data:
timing = {"t__get_item__": torch.mean(data["t__get_item__"]).item()}
else:
timing = {}
_start_time = time.time()
data = to(data, device)
timing["t_to_gpu"] = time.time() - _start_time
model.train()
model.validation_tag = None
_start_time = time.time()
with autocast(enabled=with_amp):
data = model(data)
timing["t_forward"] = time.time() - _start_time
loss_metrics = {}
if optimizer is not None:
_start_time = time.time()
overall_loss = torch.tensor(0.0, device=device)
for criterion in criterions:
losses = criterion(data)
names = criterion.get_loss_metric_names()
overall_loss += losses[names[0]]
loss_metrics.update({name: loss for name, loss in losses.items()})
timing["t_loss"] = time.time() - _start_time
## make same scale for gradients. Note: it's not ignite built-in func. (c.f. https://wandb.ai/wandb_fc/tips/reports/How-To-Use-GradScaler-in-PyTorch--VmlldzoyMTY5MDA5)
_start_time = time.time()
# optimizer.zero_grad()
# scaler.scale(overall_loss).backward()
# scaler.step(optimizer)
# scaler.update()
# Gradient accumulation
overall_loss = overall_loss / gradient_accum_factor
scaler.scale(overall_loss).backward()
if engine.state.iteration % gradient_accum_factor == 0:
scaler.step(optimizer)
scaler.update()
optimizer.zero_grad()
timing["t_backward"] = time.time() - _start_time
return {
"output": data,
"loss_dict": loss_metrics,
"timings_dict": timing,
"metrics_dict": {},
}
trainer = Engine(train_step)
trainer.logger = logger
for name, metric in metrics.items():
metric.attach(trainer, name)
# TODO: maybe save only the network not the whole wrapper
# TODO: Make adaptable
to_save = {
"trainer": trainer,
"model": model,
# "optimizer": optimizer,
# "lr_scheduler": lr_scheduler,
}
common.setup_common_training_handlers(
trainer=trainer,
train_sampler=train_sampler,
to_save=to_save,
save_every_iters=config["training"]["checkpoint_every"],
save_handler=DiskSaver(config["output"]["path"], require_empty=False),
lr_scheduler=lr_scheduler,
output_names=None,
with_pbars=False,
clear_cuda_cache=False,
log_every_iters=config.get("log_every_iters", 100),
n_saved=1,
)
# NOTE: don't move to initialization, as to save is also needed here
if config["training"].get("resume_from", None):
ckpt_path = Path(config["training"]["resume_from"])
logger.info(f"Resuming from checkpoint: {str(ckpt_path)}")
load_checkpoint(ckpt_path, to_save, strict=False)
if config["training"].get("from_pretrained", None):
ckpt_path = Path(config["training"]["from_pretrained"])
logger.info(f"Pretrained from checkpoint: {str(ckpt_path)}")
to_save = {"model": to_save["model"]}
load_checkpoint(ckpt_path, to_save, strict=False)
if idist.get_rank() == 0:
common.ProgressBar(desc=f"Training", persist=False).attach(trainer)
return trainer
def create_validators(
config,
model: torch.nn.Module,
dataloaders: dict[str, DataLoader],
criterions: list[BaseLoss],
tb_logger: TensorboardLogger,
trainer: Engine,
) -> dict[str, tuple[Engine, EventsList]]:
# TODO: change model object to evaluator object that has a different ray sampler
with_amp = config["with_amp"]
device = idist.device()
def _create_validator(
tag: str,
validation_config,
) -> tuple[Engine, EventsList]:
# TODO: make eval functions configurable from config
metrics = {}
for metric_config in validation_config["metrics"]:
agg_type = metric_config.get("agg_type", None)
if agg_type == "unsup_seg":
metrics[metric_config["type"]] = SegmentationMetric(
metric_config["type"], make_eval_fn(model, metric_config), assign_pseudo=True
)
elif agg_type == "sup_seg":
metrics[metric_config["type"]] = SegmentationMetric(
metric_config["type"], make_eval_fn(model, metric_config), assign_pseudo=False
)
elif agg_type == "concat":
metrics[metric_config["type"]] = ConcatenateMetric(
metric_config["type"], make_eval_fn(model, metric_config)
)
else:
metrics[metric_config["type"]] = DictMeanMetric(
metric_config["type"], make_eval_fn(model, metric_config)
)
loss_during_validation = validation_config.get("log_loss", True)
if loss_during_validation:
metrics_loss = {}
for criterion in criterions:
metrics_loss.update(
{
k: MeanMetric((lambda y: lambda x: x["loss_dict"][y])(k))
for k in criterion.get_loss_metric_names()
}
)
eval_metrics = {**metrics, **metrics_loss}
else:
eval_metrics = metrics
@torch.no_grad()
def validation_step(engine: Engine, data):
model.eval()
model.validation_tag = tag
if "t__get_item__" in data:
timing = {"t__get_item__": torch.mean(data["t__get_item__"]).item()}
else:
timing = {}
data = to(data, device)
with autocast(enabled=with_amp):
data = model(data)
overall_loss = torch.tensor(0.0, device=device)
loss_metrics = {}
if loss_during_validation:
for criterion in criterions:
losses = criterion(data)
names = criterion.get_loss_metric_names()
overall_loss += losses[names[0]]
loss_metrics.update({name: loss for name, loss in losses.items()})
else:
loss_metrics = {}
return {
"output": data,
"loss_dict": loss_metrics,
"timings_dict": timing,
"metrics_dict": {},
}
validator = Engine(validation_step)
add_time_handlers(validator)
# ADD METRICS
for name, metric in eval_metrics.items():
metric.attach(validator, name)
# ADD LOGGING HANDLER
# TODO: split up handlers
tb_logger.attach(
validator,
MetricLoggingHandler(
tag,
log_loss=False,
global_step_transform=global_step_fn(
trainer, validation_config["global_step"]
),
),
Events.EPOCH_COMPLETED,
)
# ADD VISUALIZATION HANDLER
if validation_config.get("visualize", None):
visualize = tb_visualize(
(model.renderer.net if hasattr(model, "renderer") else model.module.renderer.net),
dataloaders[tag].dataset.dataset,
validation_config["visualize"],
)
def vis_wrapper(*args, **kwargs):
with autocast(enabled=with_amp):
return visualize(*args, **kwargs)
tb_logger.attach(
validator,
VisualizationHandler(
tag=tag,
visualizer=vis_wrapper,
global_step_transform=global_step_fn(
trainer, validation_config["global_step"]
),
),
Events.ITERATION_COMPLETED(every=1),
)
if "save_best" in validation_config:
save_best_config = validation_config["save_best"]
metric_name = save_best_config["metric"]
sign = save_best_config.get("sign", 1.0)
update_model = save_best_config.get("update_model", False)
dry_run = save_best_config.get("dry_run", False)
best_model_handler = Checkpoint(
{"model": model},
# NOTE: fixes a problem with log_dir or logdir
DiskSaver(Path(config["output"]["path"]), require_empty=False),
# DiskSaver(tb_logger.writer.log_dir, require_empty=False),
filename_prefix=f"{metric_name}_best",
n_saved=1,
global_step_transform=global_step_from_engine(trainer),
score_name=metric_name,
score_function=Checkpoint.get_default_score_fn(
metric_name, score_sign=sign
),
)
def event_handler(engine):
if update_model:
model.update_model_eval(engine.state.metrics)
if not dry_run:
best_model_handler(engine)
trainer.state.best_metric = best_model_handler._saved[0].priority
validator.add_event_handler(Events.COMPLETED, event_handler)
if idist.get_rank() == 0 and (not validation_config.get("with_clearml", False)):
common.ProgressBar(desc=f"Evaluation ({tag})", persist=False).attach(
validator
)
return validator, event_list_from_config(validation_config["events"])
return {
name: _create_validator(name, config)
for name, config in config["validation"].items()
}
|