Spaces:
Running
on
Zero
Running
on
Zero
File size: 24,556 Bytes
9e15541 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 |
from copy import copy
import logging
from pathlib import Path
import ignite.distributed as idist
import torch
from torch import nn
from torch import optim
from torch.nn import functional as F
from torch.utils.data import Subset
from torch import profiler
import lpips
from scenedino.datasets import make_datasets
from scenedino.losses import make_loss
from scenedino.common.image_processor import make_image_processor, RGBProcessor
from scenedino.common.ray_sampler import (
ImageRaySampler,
PointBasedRaySampler,
RandomRaySampler,
RaySampler,
get_ray_sampler,
)
from scenedino.common.io.configs import load_model_config
from scenedino.common.sampling_strategies import (
get_encoder_sampling,
get_loss_renderer_sampling,
)
from scenedino.models import make_model
from scenedino.models.backbones.dino.dinov2_module import OrthogonalLinearDimReduction
# TODO: change
from scenedino.training.base_trainer import base_training
from scenedino.common.scheduler import make_scheduler
from scenedino.renderer import NeRFRenderer
from torch.cuda.amp import autocast
from scenedino.common import util
logger = logging.getLogger("training")
class BTSWrapper(nn.Module):
def __init__(
self, renderer: NeRFRenderer, ray_sampler: RaySampler, config, eval_nvs=False, dino_channels=None
) -> None:
super().__init__()
self.renderer = renderer
self.loss_from_single_img = config.get("loss_from_single_img", False)
self.use_automasking = config.get("use_automasking", False)
self.prediction_mode = config.get("prediction_mode", "multiscale")
self.alternating_ratio = config.get("alternating_ratio", None)
self.encoder_sampling = get_encoder_sampling(config["encoding_strategy"])
self.eval_encoder_sampling = get_encoder_sampling(
config["eval_encoding_strategy"]
)
self.loss_renderer_sampling = get_loss_renderer_sampling(
config["loss_renderer_strategy"]
)
self.eval_loss_renderer_sampling = get_loss_renderer_sampling(
config["eval_loss_renderer_strategy"]
)
cfg_ip = config.get("image_processor", {})
self.train_image_processor = make_image_processor(cfg_ip)
self.val_image_processor = RGBProcessor() if not self.renderer.renderer.render_flow else make_image_processor({"type": "flow_occlusion"})
self.ray_sampler = ray_sampler
if self.use_automasking:
self.train_sampler.channels += 1
self.val_sampler = ImageRaySampler(
self.ray_sampler.z_near, self.ray_sampler.z_far, dino_upscaled=self.ray_sampler.dino_upscaled
)
self.predict_uncertainty = config.get("predict_uncertainty", False)
self.uncertainty_predictor_res = config.get("uncertainty_predictor_res", 0)
self.predict_consistency = config.get("predict_consistency", False)
if self.predict_consistency:
z_near = self.ray_sampler.z_near
z_far = self.ray_sampler.z_far
consistency_rays = config.get("consistency_rays", 512)
self.random_ray_sampler = RandomRaySampler(z_near, z_far, consistency_rays)
self.point_ray_sampler = PointBasedRaySampler(z_near, z_far, consistency_rays)
if self.predict_uncertainty:
assert self.renderer.net.uncertainty_predictor is not None
self.eval_nvs = eval_nvs
if self.eval_nvs:
self.lpips = lpips.LPIPS(net="alex")
self._counter = 0
self.compensate_artifacts = config.get("compensate_artifacts", True)
if self.compensate_artifacts:
patch_size = renderer.net.encoder.gt_encoder.patch_size
image_size = renderer.net.encoder.gt_encoder.image_size
latent_size = renderer.net.encoder.gt_encoder.latent_size
self.artifact_field = nn.Parameter(torch.zeros(latent_size, image_size[0]//patch_size, image_size[1]//patch_size))
nn.init.normal_(self.artifact_field, mean=0.0, std=0.001)
else:
self.artifact_field = None
@staticmethod
def get_loss_metric_names():
return [
"loss",
"loss_l2",
"loss_mask",
"loss_temporal",
"loss_pgt",
]
def forward(self, data):
data = dict(data)
images = torch.stack(data["imgs"], dim=1) # B, n_framnes, c, h, w
poses = torch.stack(data["poses"], dim=1) # B, n_framnes, 4, 4 w2c
projs = torch.stack(data["projs"], dim=1) # B, n_frames, 4, 4 (-1, 1)
data_index = data["index"]
n, n_frames, c, h, w = images.shape
device = images.device
with autocast(enabled=False):
to_base_pose = torch.inverse(poses[:, :1, :, :])
poses = to_base_pose.expand(-1, n_frames, -1, -1) @ poses
if self.training and self.alternating_ratio is not None:
step = self._counter % (self.alternating_ratio + 1)
if step < self.alternating_ratio:
for params in self.renderer.net.encoder.parameters(True):
params.requires_grad_(True)
for params in self.renderer.net.mlp_coarse.parameters(True):
params.requires_grad_(False)
else:
for params in self.renderer.net.encoder.parameters(True):
params.requires_grad_(False)
for params in self.renderer.net.mlp_coarse.parameters(True):
params.requires_grad_(True)
if self.training:
ids_encoder = self.encoder_sampling(n_frames)
ids_loss, ids_renderer, color_frame_filter = self.loss_renderer_sampling(n_frames)
else:
ids_encoder = self.eval_encoder_sampling(n_frames)
ids_loss, ids_renderer, color_frame_filter = self.eval_loss_renderer_sampling(n_frames)
combine_ids = None
if self.loss_from_single_img:
ids_loss = ids_loss[:1]
if color_frame_filter is not None:
color_frame_filter = torch.tensor(color_frame_filter, device=images.device)
ip = self.train_image_processor if self.training else self.val_image_processor
images_ip = ip(images)
if self.predict_uncertainty:
images_uncert = images.reshape(-1, c, h, w)
uncertainties = self.renderer.net.uncertainty_predictor(images_uncert)
uncertainties = F.interpolate(uncertainties[self.uncertainty_predictor_res], (h, w), mode="bilinear", align_corners=False)
uncertainties = F.softplus(uncertainties).reshape(n, -1, 1, h, w)
images_ip = torch.cat((images_ip, uncertainties), dim=2)
with profiler.record_function(
"trainer_encode-grid"
):
self.renderer.net.compute_grid_transforms(
projs[:, ids_encoder], poses[:, ids_encoder]
)
shift = self.renderer.net.encoder.encoder.patch_size // 2
loss_feature_grid_shift = torch.randint(-shift, shift, (2,)) if self.training else None
self.renderer.net.encode(
images,
projs,
poses,
ids_encoder=ids_encoder,
ids_render=ids_renderer,
ids_loss=ids_loss,
images_alt=images_ip,
combine_ids=combine_ids,
color_frame_filter=color_frame_filter,
loss_feature_grid_shift=loss_feature_grid_shift,
)
sampler = self.ray_sampler if self.training else self.val_sampler
with autocast(enabled=False), profiler.record_function("trainer_sample-rays"):
renderer_scale = self.renderer.net._scale
dino_features = self.renderer.net.grid_l_loss_features[renderer_scale]
if self.artifact_field is not None:
dino_features = torch.cat(torch.broadcast_tensors(dino_features, self.artifact_field), dim=2)
if loss_feature_grid_shift is not None:
all_rays, all_rgb_gt, all_dino_gt = sampler.sample(
images_ip[:, ids_loss], poses[:, ids_loss], projs[:, ids_loss], image_ids=ids_loss,
dino_features=dino_features, loss_feature_grid_shift=loss_feature_grid_shift
)
else:
all_rays, all_rgb_gt, all_dino_gt = sampler.sample(
images_ip[:, ids_loss], poses[:, ids_loss], projs[:, ids_loss], image_ids=ids_loss,
dino_features=dino_features
)
if self.artifact_field is not None:
all_dino_artifacts = all_dino_gt[:, :, self.artifact_field.shape[0]:]
all_dino_gt = all_dino_gt[:, :, :self.artifact_field.shape[0]]
else:
all_dino_artifacts = None
data["fine"], data["coarse"] = [], []
scales = list(
self.renderer.net.encoder.scales
if self.prediction_mode == "multiscale"
else [self.renderer.net.get_scale()]
)
for scale in scales:
self.renderer.net.set_scale(scale)
using_fine = self.renderer.renderer.using_fine
if scale == 0:
with profiler.record_function("trainer_render"):
render_dict = self.renderer(
all_rays,
want_weights=True,
want_alphas=True,
want_rgb_samps=True,
)
else:
using_fine = self.renderer.renderer.using_fine
self.renderer.renderer.using_fine = False
render_dict = self.renderer(
all_rays,
want_weights=True,
want_alphas=True,
want_rgb_samps=False,
)
self.renderer.renderer.using_fine = using_fine
# if "fine" not in render_dict:
# render_dict["fine"] = dict(render_dict["coarse"])
render_dict["rgb_gt"] = all_rgb_gt
render_dict["rays"] = all_rays
render_dict["dino_gt"] = all_dino_gt.float()
if all_dino_artifacts is not None:
render_dict["dino_artifacts"] = all_dino_artifacts.float()
render_dict = sampler.reconstruct(render_dict,
channels=images_ip.shape[2],
dino_channels=self.renderer.net.encoder.dino_pca_dim)
if "fine" in render_dict:
data["fine"].append(render_dict["fine"])
data["coarse"].append(render_dict["coarse"])
data["rgb_gt"] = render_dict["rgb_gt"]
data["dino_gt"] = render_dict["dino_gt"]
if "dino_artifacts" in render_dict:
data["dino_artifacts"] = render_dict["dino_artifacts"]
data["rays"] = render_dict["rays"]
dino_module = self.renderer.net.encoder
if isinstance(dino_module.dim_reduction, OrthogonalLinearDimReduction):
data["reduction_matrix"] = dino_module.dim_reduction.weights
downsampling_mode = "patch" if self.training else "image"
for _data_coarse in data["coarse"]:
_data_coarse["dino_features"] = dino_module.expand_dim(_data_coarse["dino_features"])
downsampling_result = dino_module.downsample(_data_coarse["dino_features"], downsampling_mode)
if isinstance(downsampling_result, tuple):
(_data_coarse["dino_features_downsampled"],
_data_coarse["dino_features_salience_map"],
_data_coarse["dino_features_weight_map"],
_data_coarse["dino_features_per_patch_weight"]) = downsampling_result
elif downsampling_result is not None:
_data_coarse["dino_features_downsampled"] = downsampling_result
if not self.training and self.validation_tag == "visualization":
logger.info("Visualizing a batch...")
with torch.amp.autocast(render_dict["dino_gt"].device.type, enabled=False):
dino_module.fit_visualization(render_dict["dino_gt"].flatten(0, -2))
data["vis_batch_dino_gt"] = [
dino_module.transform_visualization(data["dino_gt"], norm=True, from_dim=0),
dino_module.transform_visualization(data["dino_gt"], norm=True, from_dim=3),
dino_module.transform_visualization(data["dino_gt"], norm=True, from_dim=6),
]
#data["vis_batch_dino_gt_kmeans"] = dino_module.fit_transform_kmeans_visualization(data["dino_gt"])
for _data_coarse in data["coarse"]:
with torch.amp.autocast(_data_coarse["dino_features"].device.type, enabled=False):
dino_module.fit_visualization(_data_coarse["dino_features"].flatten(0, -2))
_data_coarse["vis_batch_dino_features"] = [
dino_module.transform_visualization(_data_coarse["dino_features"], norm=True, from_dim=0),
dino_module.transform_visualization(_data_coarse["dino_features"], norm=True, from_dim=3),
dino_module.transform_visualization(_data_coarse["dino_features"], norm=True, from_dim=6),
]
#_data_coarse["vis_batch_dino_features_kmeans"] = dino_module.fit_transform_kmeans_visualization(_data_coarse["dino_features"])
if "dino_features_downsampled" in _data_coarse:
_data_coarse["vis_batch_dino_features_downsampled"] = [
dino_module.transform_visualization(_data_coarse["dino_features_downsampled"], norm=True, from_dim=0),
dino_module.transform_visualization(_data_coarse["dino_features_downsampled"], norm=True, from_dim=3),
dino_module.transform_visualization(_data_coarse["dino_features_downsampled"], norm=True, from_dim=6),
]
if "dino_artifacts" in data:
with torch.amp.autocast(render_dict["dino_gt"].device.type, enabled=False):
dino_module.fit_visualization(render_dict["dino_artifacts"].flatten(0, -2))
data["vis_batch_dino_artifacts"] = [
dino_module.transform_visualization(data["dino_artifacts"], norm=True, from_dim=0),
dino_module.transform_visualization(data["dino_artifacts"], norm=True, from_dim=3),
dino_module.transform_visualization(data["dino_artifacts"], norm=True, from_dim=6),
]
if self.training:
data["feature_volume"] = self.renderer.net.grid_f_features[0]
if self.predict_consistency and self.training:
cf = 1
data["consistency"] = []
rays_0, rgb_gt_0 = self.random_ray_sampler.sample(
images_ip[:, :1], poses[:, :1], projs[:, :1]
)
render_dict_0 = self.renderer(
rays_0,
want_weights=False,
want_alphas=False,
want_rgb_samps=False,
)
render_dict_0["rgb_gt"] = rgb_gt_0
render_dict_0["rays"] = rays_0
render_dict_0 = self.random_ray_sampler.reconstruct(render_dict_0, channels=images_ip.shape[2])
xyz = rays_0[..., :3] + rays_0[..., 3:6] / torch.norm(rays_0[..., 3:6], keepdim=True, dim=-1) * render_dict_0["coarse"]["depth"][..., None]
rays_1, rgb_gt_1 = self.point_ray_sampler.sample(
images_ip[:, cf:cf+1], poses[:, cf:cf+1], projs[:, cf:cf+1], xyz
)
self.renderer.net.encode(
images[:, cf:cf+1],
projs[:, cf:cf+1],
poses[:, cf:cf+1],
images_alt=images_ip[:, cf:cf+1],
)
render_dict_1 = self.renderer(
rays_1,
want_weights=True,
want_alphas=False,
want_rgb_samps=False,
)
render_dict_1["rgb_gt"] = rgb_gt_1
render_dict_1["rays"] = rays_1
render_dict_1 = self.point_ray_sampler.reconstruct(render_dict_1, channels=images_ip.shape[2])
data["consistency"] = {
"render_dict_0": render_dict_0,
"render_dict_1": render_dict_1,
}
data["z_near"] = torch.tensor(self.ray_sampler.z_near, device=images.device)
data["z_far"] = torch.tensor(self.ray_sampler.z_far, device=images.device)
surface_sample = self.sample_from_3d(poses, projs, data["coarse"][0]["depth"])
if surface_sample is not None:
data["sample_surface_dino_features"], data["sample_surface_sigma"] = surface_sample
if self.training:
self._counter += 1
return data
def sample_from_3d(self, poses, projs, depth, z_near=2, z_far=50, n_crops=5, n_samples=576, sample_radius=0.1):
positions_samples = []
n = projs.size(0)
for n_ in range(n):
focals = projs[n_, :1, [0, 1], [0, 1]]
centers = projs[n_, :1, [0, 1], [2, 2]]
_, _, height, width = depth.shape
rays, _ = util.gen_rays(
poses[n_, :1].view(-1, 4, 4),
width,
height,
focal=focals,
c=centers,
z_near=0,
z_far=0,
norm_dir=True,
)
current_depth = depth[n_, 0] # [h, w]
valid_positions = torch.nonzero((current_depth > z_near) & (current_depth < z_far), as_tuple=False)
if valid_positions.size(0) < n_crops: # Not enough samples in depth range (z_near, z_far)
return None
sampled_positions = valid_positions[torch.randperm(valid_positions.size(0))[:n_crops]]
cam_centers = rays[0, :, :, :3] # [h, w, 3]
cam_raydir = rays[0, :, :, 3:6] # [h, w, 3]
depth_crop = current_depth[sampled_positions[:, 0], sampled_positions[:, 1]] # [n_crops]
cam_centers_crop = cam_centers[sampled_positions[:, 0], sampled_positions[:, 1]] # [n_crops, 3]
cam_raydir_crop = cam_raydir[sampled_positions[:, 0], sampled_positions[:, 1]] # [n_crops, 3]
positions_crop = cam_centers_crop + cam_raydir_crop * depth_crop.unsqueeze(-1) # [n_crops, 3]
random_shifts = sample_radius * torch.randn(n_crops, n_samples, 3, device=positions_crop.device) # [n_crops, n_samples, 3]
# random_shifts = random_shifts * depth_crop[:, None, None] / 5.0
positions_samples.append(positions_crop.unsqueeze(1) + random_shifts) # [n_crops, n_samples, 3]
positions_samples = torch.stack(positions_samples, dim=0) # [n, n_crops, n_samples, 3]
_, _, sigma, _, state_dict = self.renderer.net(positions_samples.flatten(1, -2)) # [n, n_crops*n_samples, ...]
sigma = sigma.view(n, n_crops, n_samples, -1)
dino = state_dict["dino_features"].view(n, n_crops, n_samples, -1)
return self.renderer.net.encoder.expand_dim(dino), 1 - torch.exp(-sigma)
def training(local_rank, config):
return base_training(
local_rank,
config,
get_dataflow,
initialize,
)
def get_subset(config, len_dataset: int):
subset_type = config.get("type", None)
match subset_type:
case "random":
return torch.sort(
torch.randperm(len_dataset)[: config["args"]["size"]]
)[0].tolist()
case "range":
return list(
range(
config["args"].get("start", 0),
config["args"].get("end", len_dataset),
)
)
case _:
return list(range(len_dataset))
# NOTE: type hints are difficult but should be tuple[DataLoader, dict[str, DataLoader]]
def get_dataflow(config):
# TODO: change to reflect evaluation
# - Get train/test datasets
if idist.get_local_rank() > 0:
# Ensure that only local rank 0 download the dataset
# Thus each node will download a copy of the dataset
idist.barrier()
# REMOVE: ?
mode = config.get("mode", "depth")
train_dataset, test_dataset = make_datasets(config["dataset"])
train_loader = idist.auto_dataloader(
train_dataset,
batch_size=config["batch_size"],
num_workers=config["num_workers"],
shuffle=True,
drop_last=True,
)
validation_loaders = {}
for name, validation_config in config["validation"].items():
dataset = copy(test_dataset)
# TODO: check the following configs
# dataset.frame_count = (
# 1
# if isinstance(train_dataset, KittiRawDataset)
# or isinstance(train_dataset, KittiOdometryDataset)
# else 2
# )
dataset._left_offset = 0
dataset.return_stereo = True
dataset.return_depth = True
subset = Subset(dataset, get_subset(validation_config["subset"], len(dataset)))
validation_loaders[name] = idist.auto_dataloader(
subset,
batch_size=validation_config.get("batch_size", 1),
num_workers=0, # Find issue here
shuffle=False,
)
if idist.get_local_rank() == 0:
# Ensure that only local rank 0 download the dataset
idist.barrier()
return train_loader, validation_loaders
def initialize(config: dict):
# Continue if checkpoint already exists
if config["training"].get("continue", False):
prefix = "training_checkpoint_"
ckpts = Path(config["output"]["path"]).glob(f"{prefix}*.pt")
# TODO: probably correct logic but please check
training_steps = [int(ckpt.stem.split(prefix)[1]) for ckpt in ckpts]
if training_steps:
config["training"]["resume_from"] = (
Path(config["output"]["path"]) / f"{prefix}{max(training_steps)}.pt"
)
# TODO: think about this again
if config["training"].get("continue", False) and config["training"].get(
"resume_from", None
):
config_path = Path(config["output"]["path"])
logger.info(f"Loading model config from {config_path}")
load_model_config(config_path, config)
net = make_model(config["model"])
renderer = NeRFRenderer.from_conf(config["renderer"])
renderer = renderer.bind_parallel(net, gpus=None).eval()
mode = config.get("mode", "depth")
ray_sampler = get_ray_sampler(config["training"]["ray_sampler"])
model = BTSWrapper(renderer, ray_sampler, config["model"], mode == "nvs")
model = idist.auto_model(model)
dino_decoder_optim_args = config["training"]["optimizer"]["args"].copy()
dino_decoder_optim_args["lr"] = dino_decoder_optim_args["lr"]
dino_encoder_optim_args = config["training"]["optimizer"]["args"].copy()
dino_encoder_optim_args["lr"] = dino_encoder_optim_args["lr"] / 10 # for fine-tuning
# TODO: make optimizer itself configurable configurable
optimizer = optim.Adam(
[
{"params": (p for n, p in model.named_parameters() if not (n.startswith('renderer.net.encoder.encoder.') or n.startswith('renderer.net.encoder.decoder.'))),
**config["training"]["optimizer"]["args"]},
{"params": model.renderer.net.encoder.decoder.parameters(),
**dino_decoder_optim_args},
{"params": model.renderer.net.encoder.encoder.parameters(),
**dino_encoder_optim_args},
]
)
optimizer = idist.auto_optim(optimizer)
lr_scheduler = make_scheduler(config["training"].get("scheduler", {}), optimizer)
# TODO: change to reflect all the losses together with the config
# TODO: integrate lambda for all losses
criterion = [
make_loss(config_loss)
for config_loss in config["training"]["loss"]
# ReconstructionLoss(
# config["training"]["loss"], config["model"].get("use_automasking", False)
# )
]
return model, optimizer, criterion, lr_scheduler
|