File size: 24,556 Bytes
9e15541
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
from copy import copy
import logging
from pathlib import Path

import ignite.distributed as idist
import torch
from torch import nn
from torch import optim
from torch.nn import functional as F
from torch.utils.data import Subset
from torch import profiler

import lpips

from scenedino.datasets import make_datasets
from scenedino.losses import make_loss
from scenedino.common.image_processor import make_image_processor, RGBProcessor
from scenedino.common.ray_sampler import (
    ImageRaySampler,
    PointBasedRaySampler,
    RandomRaySampler,
    RaySampler,
    get_ray_sampler,
)
from scenedino.common.io.configs import load_model_config
from scenedino.common.sampling_strategies import (
    get_encoder_sampling,
    get_loss_renderer_sampling,
)
from scenedino.models import make_model
from scenedino.models.backbones.dino.dinov2_module import OrthogonalLinearDimReduction

# TODO: change
from scenedino.training.base_trainer import base_training
from scenedino.common.scheduler import make_scheduler
from scenedino.renderer import NeRFRenderer

from torch.cuda.amp import autocast
from scenedino.common import util


logger = logging.getLogger("training")


class BTSWrapper(nn.Module):
    def __init__(
        self, renderer: NeRFRenderer, ray_sampler: RaySampler, config, eval_nvs=False, dino_channels=None
    ) -> None:
        super().__init__()
        self.renderer = renderer

        self.loss_from_single_img = config.get("loss_from_single_img", False)

        self.use_automasking = config.get("use_automasking", False)

        self.prediction_mode = config.get("prediction_mode", "multiscale")

        self.alternating_ratio = config.get("alternating_ratio", None)

        self.encoder_sampling = get_encoder_sampling(config["encoding_strategy"])
        self.eval_encoder_sampling = get_encoder_sampling(
            config["eval_encoding_strategy"]
        )
        self.loss_renderer_sampling = get_loss_renderer_sampling(
            config["loss_renderer_strategy"]
        )
        self.eval_loss_renderer_sampling = get_loss_renderer_sampling(
            config["eval_loss_renderer_strategy"]
        )

        cfg_ip = config.get("image_processor", {})
        self.train_image_processor = make_image_processor(cfg_ip)
        self.val_image_processor = RGBProcessor() if not self.renderer.renderer.render_flow else make_image_processor({"type": "flow_occlusion"})

        self.ray_sampler = ray_sampler

        if self.use_automasking:
            self.train_sampler.channels += 1

        self.val_sampler = ImageRaySampler(
            self.ray_sampler.z_near, self.ray_sampler.z_far, dino_upscaled=self.ray_sampler.dino_upscaled
        )

        self.predict_uncertainty = config.get("predict_uncertainty", False)
        self.uncertainty_predictor_res = config.get("uncertainty_predictor_res", 0)

        self.predict_consistency = config.get("predict_consistency", False)


        if self.predict_consistency:
            z_near = self.ray_sampler.z_near
            z_far = self.ray_sampler.z_far
            consistency_rays = config.get("consistency_rays", 512)

            self.random_ray_sampler = RandomRaySampler(z_near, z_far, consistency_rays)
            self.point_ray_sampler = PointBasedRaySampler(z_near, z_far, consistency_rays)

        if self.predict_uncertainty:
            assert self.renderer.net.uncertainty_predictor is not None

        self.eval_nvs = eval_nvs
        if self.eval_nvs:
            self.lpips = lpips.LPIPS(net="alex")

        self._counter = 0

        self.compensate_artifacts = config.get("compensate_artifacts", True)
        if self.compensate_artifacts:
            patch_size = renderer.net.encoder.gt_encoder.patch_size
            image_size = renderer.net.encoder.gt_encoder.image_size
            latent_size = renderer.net.encoder.gt_encoder.latent_size

            self.artifact_field = nn.Parameter(torch.zeros(latent_size, image_size[0]//patch_size, image_size[1]//patch_size))
            nn.init.normal_(self.artifact_field, mean=0.0, std=0.001)
        else:
            self.artifact_field = None

    @staticmethod
    def get_loss_metric_names():
        return [
            "loss",
            "loss_l2",
            "loss_mask",
            "loss_temporal",
            "loss_pgt",
        ]

    def forward(self, data):
        data = dict(data)
        images = torch.stack(data["imgs"], dim=1)  # B, n_framnes, c, h, w
        poses = torch.stack(data["poses"], dim=1)  # B, n_framnes, 4, 4 w2c
        projs = torch.stack(data["projs"], dim=1)  # B, n_frames, 4, 4 (-1, 1)
        data_index = data["index"]

        n, n_frames, c, h, w = images.shape
        device = images.device

        with autocast(enabled=False):
            to_base_pose = torch.inverse(poses[:, :1, :, :])
            poses = to_base_pose.expand(-1, n_frames, -1, -1) @ poses

        if self.training and self.alternating_ratio is not None:
            step = self._counter % (self.alternating_ratio + 1)
            if step < self.alternating_ratio:
                for params in self.renderer.net.encoder.parameters(True):
                    params.requires_grad_(True)
                for params in self.renderer.net.mlp_coarse.parameters(True):
                    params.requires_grad_(False)
            else:
                for params in self.renderer.net.encoder.parameters(True):
                    params.requires_grad_(False)
                for params in self.renderer.net.mlp_coarse.parameters(True):
                    params.requires_grad_(True)

        if self.training:
            ids_encoder = self.encoder_sampling(n_frames)
            ids_loss, ids_renderer, color_frame_filter = self.loss_renderer_sampling(n_frames)
        else:
            ids_encoder = self.eval_encoder_sampling(n_frames)
            ids_loss, ids_renderer, color_frame_filter = self.eval_loss_renderer_sampling(n_frames)

        combine_ids = None

        if self.loss_from_single_img:
            ids_loss = ids_loss[:1]

        if color_frame_filter is not None:
            color_frame_filter = torch.tensor(color_frame_filter, device=images.device)

        ip = self.train_image_processor if self.training else self.val_image_processor
        images_ip = ip(images)

        if self.predict_uncertainty:
            images_uncert = images.reshape(-1, c, h, w)
            uncertainties = self.renderer.net.uncertainty_predictor(images_uncert)
            uncertainties = F.interpolate(uncertainties[self.uncertainty_predictor_res], (h, w), mode="bilinear", align_corners=False)
            uncertainties = F.softplus(uncertainties).reshape(n, -1, 1, h, w)
            images_ip = torch.cat((images_ip, uncertainties), dim=2)

        with profiler.record_function(
            "trainer_encode-grid"
        ):
            self.renderer.net.compute_grid_transforms(
                projs[:, ids_encoder], poses[:, ids_encoder]
            )
            shift = self.renderer.net.encoder.encoder.patch_size // 2
            loss_feature_grid_shift = torch.randint(-shift, shift, (2,)) if self.training else None
            self.renderer.net.encode(
                images,
                projs,
                poses,
                ids_encoder=ids_encoder,
                ids_render=ids_renderer,
                ids_loss=ids_loss,
                images_alt=images_ip,
                combine_ids=combine_ids,
                color_frame_filter=color_frame_filter,
                loss_feature_grid_shift=loss_feature_grid_shift,
            )

        sampler = self.ray_sampler if self.training else self.val_sampler

        with autocast(enabled=False), profiler.record_function("trainer_sample-rays"):
            renderer_scale = self.renderer.net._scale
            dino_features = self.renderer.net.grid_l_loss_features[renderer_scale]

            if self.artifact_field is not None:
                dino_features = torch.cat(torch.broadcast_tensors(dino_features, self.artifact_field), dim=2)

            if loss_feature_grid_shift is not None:
                all_rays, all_rgb_gt, all_dino_gt = sampler.sample(
                    images_ip[:, ids_loss], poses[:, ids_loss], projs[:, ids_loss], image_ids=ids_loss,
                    dino_features=dino_features, loss_feature_grid_shift=loss_feature_grid_shift
                )
            else:
                all_rays, all_rgb_gt, all_dino_gt = sampler.sample(
                    images_ip[:, ids_loss], poses[:, ids_loss], projs[:, ids_loss], image_ids=ids_loss,
                    dino_features=dino_features
                )
        
        if self.artifact_field is not None:
            all_dino_artifacts = all_dino_gt[:, :, self.artifact_field.shape[0]:]
            all_dino_gt = all_dino_gt[:, :, :self.artifact_field.shape[0]]
        else:
            all_dino_artifacts = None

        data["fine"], data["coarse"] = [], []

        scales = list(
            self.renderer.net.encoder.scales
            if self.prediction_mode == "multiscale"
            else [self.renderer.net.get_scale()]
        )

        for scale in scales:
            self.renderer.net.set_scale(scale)

            using_fine = self.renderer.renderer.using_fine

            if scale == 0:
                with profiler.record_function("trainer_render"):
                    render_dict = self.renderer(
                        all_rays,
                        want_weights=True,
                        want_alphas=True,
                        want_rgb_samps=True,
                    )
            else:
                using_fine = self.renderer.renderer.using_fine
                self.renderer.renderer.using_fine = False
                render_dict = self.renderer(
                    all_rays,
                    want_weights=True,
                    want_alphas=True,
                    want_rgb_samps=False,
                )
                self.renderer.renderer.using_fine = using_fine

            # if "fine" not in render_dict:
            #     render_dict["fine"] = dict(render_dict["coarse"])

            render_dict["rgb_gt"] = all_rgb_gt
            render_dict["rays"] = all_rays
            render_dict["dino_gt"] = all_dino_gt.float()

            if all_dino_artifacts is not None:
                render_dict["dino_artifacts"] = all_dino_artifacts.float()

            render_dict = sampler.reconstruct(render_dict,
                                              channels=images_ip.shape[2],
                                              dino_channels=self.renderer.net.encoder.dino_pca_dim)

            if "fine" in render_dict:
                data["fine"].append(render_dict["fine"])
            data["coarse"].append(render_dict["coarse"])
            data["rgb_gt"] = render_dict["rgb_gt"]
            data["dino_gt"] = render_dict["dino_gt"]
            if "dino_artifacts" in render_dict:
                data["dino_artifacts"] = render_dict["dino_artifacts"]
            data["rays"] = render_dict["rays"]

            dino_module = self.renderer.net.encoder
            if isinstance(dino_module.dim_reduction, OrthogonalLinearDimReduction):
                data["reduction_matrix"] = dino_module.dim_reduction.weights

            downsampling_mode = "patch" if self.training else "image"
            for _data_coarse in data["coarse"]:
                _data_coarse["dino_features"] = dino_module.expand_dim(_data_coarse["dino_features"])
                downsampling_result = dino_module.downsample(_data_coarse["dino_features"], downsampling_mode)
                if isinstance(downsampling_result, tuple):
                    (_data_coarse["dino_features_downsampled"],
                     _data_coarse["dino_features_salience_map"],
                     _data_coarse["dino_features_weight_map"],
                     _data_coarse["dino_features_per_patch_weight"]) = downsampling_result
                elif downsampling_result is not None:
                    _data_coarse["dino_features_downsampled"] = downsampling_result

            if not self.training and self.validation_tag == "visualization":
                logger.info("Visualizing a batch...")
                with torch.amp.autocast(render_dict["dino_gt"].device.type, enabled=False):
                    dino_module.fit_visualization(render_dict["dino_gt"].flatten(0, -2))
                data["vis_batch_dino_gt"] = [
                    dino_module.transform_visualization(data["dino_gt"], norm=True, from_dim=0),
                    dino_module.transform_visualization(data["dino_gt"], norm=True, from_dim=3),
                    dino_module.transform_visualization(data["dino_gt"], norm=True, from_dim=6),
                ]
                #data["vis_batch_dino_gt_kmeans"] = dino_module.fit_transform_kmeans_visualization(data["dino_gt"])
                for _data_coarse in data["coarse"]:
                    with torch.amp.autocast(_data_coarse["dino_features"].device.type, enabled=False):
                        dino_module.fit_visualization(_data_coarse["dino_features"].flatten(0, -2))
                    _data_coarse["vis_batch_dino_features"] = [
                        dino_module.transform_visualization(_data_coarse["dino_features"], norm=True, from_dim=0),
                        dino_module.transform_visualization(_data_coarse["dino_features"], norm=True, from_dim=3),
                        dino_module.transform_visualization(_data_coarse["dino_features"], norm=True, from_dim=6),
                    ]
                    #_data_coarse["vis_batch_dino_features_kmeans"] = dino_module.fit_transform_kmeans_visualization(_data_coarse["dino_features"])
                    if "dino_features_downsampled" in _data_coarse:
                        _data_coarse["vis_batch_dino_features_downsampled"] = [
                            dino_module.transform_visualization(_data_coarse["dino_features_downsampled"], norm=True, from_dim=0),
                            dino_module.transform_visualization(_data_coarse["dino_features_downsampled"], norm=True, from_dim=3),
                            dino_module.transform_visualization(_data_coarse["dino_features_downsampled"], norm=True, from_dim=6),
                        ]

                if "dino_artifacts" in data:
                    with torch.amp.autocast(render_dict["dino_gt"].device.type, enabled=False):
                        dino_module.fit_visualization(render_dict["dino_artifacts"].flatten(0, -2))
                    data["vis_batch_dino_artifacts"] = [
                        dino_module.transform_visualization(data["dino_artifacts"], norm=True, from_dim=0),
                        dino_module.transform_visualization(data["dino_artifacts"], norm=True, from_dim=3),
                        dino_module.transform_visualization(data["dino_artifacts"], norm=True, from_dim=6),
                    ]


        if self.training:
            data["feature_volume"] = self.renderer.net.grid_f_features[0]

        if self.predict_consistency and self.training:
            cf = 1

            data["consistency"] = []

            rays_0, rgb_gt_0 = self.random_ray_sampler.sample(
                images_ip[:, :1], poses[:, :1], projs[:, :1]
            )

            render_dict_0 = self.renderer(
                    rays_0,
                    want_weights=False,
                    want_alphas=False,
                    want_rgb_samps=False,
            )

            render_dict_0["rgb_gt"] = rgb_gt_0
            render_dict_0["rays"] = rays_0

            render_dict_0 = self.random_ray_sampler.reconstruct(render_dict_0, channels=images_ip.shape[2])

            xyz = rays_0[..., :3] + rays_0[..., 3:6] / torch.norm(rays_0[..., 3:6], keepdim=True, dim=-1) * render_dict_0["coarse"]["depth"][..., None]

            rays_1, rgb_gt_1 = self.point_ray_sampler.sample(
                images_ip[:, cf:cf+1], poses[:, cf:cf+1], projs[:, cf:cf+1], xyz
            )

            self.renderer.net.encode(
                images[:, cf:cf+1],
                projs[:, cf:cf+1],
                poses[:, cf:cf+1],
                images_alt=images_ip[:, cf:cf+1],
            )

            render_dict_1 = self.renderer(
                    rays_1,
                    want_weights=True,
                    want_alphas=False,
                    want_rgb_samps=False,       
            )

            render_dict_1["rgb_gt"] = rgb_gt_1
            render_dict_1["rays"] = rays_1

            render_dict_1 = self.point_ray_sampler.reconstruct(render_dict_1, channels=images_ip.shape[2])

            data["consistency"] = {
                "render_dict_0": render_dict_0,
                "render_dict_1": render_dict_1,
            }

        data["z_near"] = torch.tensor(self.ray_sampler.z_near, device=images.device)
        data["z_far"] = torch.tensor(self.ray_sampler.z_far, device=images.device)

        surface_sample = self.sample_from_3d(poses, projs, data["coarse"][0]["depth"])
        if surface_sample is not None:
            data["sample_surface_dino_features"], data["sample_surface_sigma"] = surface_sample

        if self.training:
            self._counter += 1

        return data


    def sample_from_3d(self, poses, projs, depth, z_near=2, z_far=50, n_crops=5, n_samples=576, sample_radius=0.1):
        positions_samples = []
        n = projs.size(0)
        for n_ in range(n):
            focals = projs[n_, :1, [0, 1], [0, 1]]
            centers = projs[n_, :1, [0, 1], [2, 2]]

            _, _, height, width = depth.shape
            rays, _ = util.gen_rays(
                poses[n_, :1].view(-1, 4, 4),
                width,
                height,
                focal=focals,
                c=centers,
                z_near=0,
                z_far=0,
                norm_dir=True,
            )
            current_depth = depth[n_, 0]  # [h, w]
            
            valid_positions = torch.nonzero((current_depth > z_near) & (current_depth < z_far), as_tuple=False)
            if valid_positions.size(0) < n_crops:  # Not enough samples in depth range (z_near, z_far)
                return None
            sampled_positions = valid_positions[torch.randperm(valid_positions.size(0))[:n_crops]]

            cam_centers = rays[0, :, :, :3]  # [h, w, 3]
            cam_raydir = rays[0, :, :, 3:6]  # [h, w, 3]

            depth_crop = current_depth[sampled_positions[:, 0], sampled_positions[:, 1]]      # [n_crops]
            cam_centers_crop = cam_centers[sampled_positions[:, 0], sampled_positions[:, 1]]  # [n_crops, 3]
            cam_raydir_crop = cam_raydir[sampled_positions[:, 0], sampled_positions[:, 1]]    # [n_crops, 3]

            positions_crop = cam_centers_crop + cam_raydir_crop * depth_crop.unsqueeze(-1)  # [n_crops, 3]
            random_shifts = sample_radius * torch.randn(n_crops, n_samples, 3, device=positions_crop.device)   # [n_crops, n_samples, 3]
            # random_shifts = random_shifts * depth_crop[:, None, None] / 5.0

            positions_samples.append(positions_crop.unsqueeze(1) + random_shifts)           # [n_crops, n_samples, 3]

        positions_samples = torch.stack(positions_samples, dim=0)  # [n, n_crops, n_samples, 3]

        _, _, sigma, _, state_dict = self.renderer.net(positions_samples.flatten(1, -2))  # [n, n_crops*n_samples, ...]
        sigma = sigma.view(n, n_crops, n_samples, -1)
        dino = state_dict["dino_features"].view(n, n_crops, n_samples, -1)

        return self.renderer.net.encoder.expand_dim(dino), 1 - torch.exp(-sigma)


def training(local_rank, config):
    return base_training(
        local_rank,
        config,
        get_dataflow,
        initialize,
    )


def get_subset(config, len_dataset: int):
    subset_type = config.get("type", None)
    match subset_type:
        case "random":
            return torch.sort(
                torch.randperm(len_dataset)[: config["args"]["size"]]
            )[0].tolist()
        case "range":
            return list(
                range(
                    config["args"].get("start", 0),
                    config["args"].get("end", len_dataset),
                )
            )
        case _:
            return list(range(len_dataset))


# NOTE: type hints are difficult but should be tuple[DataLoader, dict[str, DataLoader]]
def get_dataflow(config):
    # TODO: change to reflect evaluation
    # - Get train/test datasets
    if idist.get_local_rank() > 0:
        # Ensure that only local rank 0 download the dataset
        # Thus each node will download a copy of the dataset
        idist.barrier()

    # REMOVE: ?
    mode = config.get("mode", "depth")

    train_dataset, test_dataset = make_datasets(config["dataset"])
    train_loader = idist.auto_dataloader(
        train_dataset,
        batch_size=config["batch_size"],
        num_workers=config["num_workers"],
        shuffle=True,
        drop_last=True,
    )

    validation_loaders = {}
    for name, validation_config in config["validation"].items():
        dataset = copy(test_dataset)
        # TODO: check the following configs
        # dataset.frame_count = (
        #     1
        #     if isinstance(train_dataset, KittiRawDataset)
        #     or isinstance(train_dataset, KittiOdometryDataset)
        #     else 2
        # )
        dataset._left_offset = 0
        dataset.return_stereo = True
        dataset.return_depth = True

        subset = Subset(dataset, get_subset(validation_config["subset"], len(dataset)))
        validation_loaders[name] = idist.auto_dataloader(
            subset,
            batch_size=validation_config.get("batch_size", 1),
            num_workers=0,  # Find issue here
            shuffle=False,
        )

    if idist.get_local_rank() == 0:
        # Ensure that only local rank 0 download the dataset
        idist.barrier()

    return train_loader, validation_loaders


def initialize(config: dict):
    # Continue if checkpoint already exists
    if config["training"].get("continue", False):
        prefix = "training_checkpoint_"
        ckpts = Path(config["output"]["path"]).glob(f"{prefix}*.pt")
        # TODO: probably correct logic but please check
        training_steps = [int(ckpt.stem.split(prefix)[1]) for ckpt in ckpts]
        if training_steps:
            config["training"]["resume_from"] = (
                Path(config["output"]["path"]) / f"{prefix}{max(training_steps)}.pt"
            )

    # TODO: think about this again
    if config["training"].get("continue", False) and config["training"].get(
        "resume_from", None
    ):
        config_path = Path(config["output"]["path"])
        logger.info(f"Loading model config from {config_path}")
        load_model_config(config_path, config)

    net = make_model(config["model"])

    renderer = NeRFRenderer.from_conf(config["renderer"])
    renderer = renderer.bind_parallel(net, gpus=None).eval()

    mode = config.get("mode", "depth")

    ray_sampler = get_ray_sampler(config["training"]["ray_sampler"])

    model = BTSWrapper(renderer, ray_sampler, config["model"], mode == "nvs")

    model = idist.auto_model(model)

    dino_decoder_optim_args = config["training"]["optimizer"]["args"].copy()
    dino_decoder_optim_args["lr"] = dino_decoder_optim_args["lr"]

    dino_encoder_optim_args = config["training"]["optimizer"]["args"].copy()
    dino_encoder_optim_args["lr"] = dino_encoder_optim_args["lr"] / 10  # for fine-tuning

    # TODO: make optimizer itself configurable configurable
    optimizer = optim.Adam(
        [
            {"params": (p for n, p in model.named_parameters() if not (n.startswith('renderer.net.encoder.encoder.') or n.startswith('renderer.net.encoder.decoder.'))), 
             **config["training"]["optimizer"]["args"]},
            {"params": model.renderer.net.encoder.decoder.parameters(), 
             **dino_decoder_optim_args},
            {"params": model.renderer.net.encoder.encoder.parameters(), 
             **dino_encoder_optim_args},
        ]
    )
    optimizer = idist.auto_optim(optimizer)

    lr_scheduler = make_scheduler(config["training"].get("scheduler", {}), optimizer)

    # TODO: change to reflect all the losses together with the config
    # TODO: integrate lambda for all losses
    criterion = [
        make_loss(config_loss)
        for config_loss in config["training"]["loss"]
        # ReconstructionLoss(
        #     config["training"]["loss"], config["model"].get("use_automasking", False)
        # )
    ]

    return model, optimizer, criterion, lr_scheduler