Spaces:
Running
on
Zero
Running
on
Zero
File size: 16,041 Bytes
9e15541 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 |
import logging
from pathlib import Path
import ignite.distributed as idist
import torch
from torch import optim
from scenedino.losses import make_loss
from scenedino.common.ray_sampler import (
RaySampler,
get_ray_sampler,
)
from scenedino.common.io.configs import load_model_config
from scenedino.models import make_model
from scenedino.training.trainer import BTSWrapper, get_dataflow
from scenedino.training.base_trainer import base_training
from scenedino.common.scheduler import make_scheduler
from scenedino.renderer import NeRFRenderer
from scenedino.common import util
from torch.cuda.amp import autocast
logger = logging.getLogger("training")
class BTSDownstreamWrapper(BTSWrapper):
def __init__(
self, renderer: NeRFRenderer, ray_sampler: RaySampler, config, eval_nvs=False, dino_channels=None
) -> None:
super().__init__(renderer, ray_sampler, config, eval_nvs, dino_channels)
for param in super().parameters(True):
param.requires_grad_(False)
for param in renderer.net.downstream_head.parameters(True):
param.requires_grad_(True)
self.sample_radius_3d = config.get("sample_radius_3d", 0.5)
def forward(self, data):
with torch.no_grad():
# TODO: CLEAN THIS UP
if self.renderer.net.downstream_head.training and len(data["imgs"]) > 1 and torch.rand(1).item() < 0.5:
# side view
encode_id = torch.randint(low=4, high=8, size=(1,)).item()
# Segmentation only present in front view
data.pop("segs")
else:
encode_id = 0
data["imgs"] = [data["imgs"][encode_id]]
data["projs"] = [data["projs"][encode_id]]
data["poses"] = [data["poses"][encode_id]]
data = self.forward_downstream(data, id_encoder=0)
if not self.renderer.net.downstream_head.training and hasattr(self, "validation_tag") and self.validation_tag == "visualization_seg":
dino_module = self.renderer.net.encoder
dino_module.visualization.n_kmeans_clusters = 19
for _data_coarse in data["coarse"]:
with torch.amp.autocast(_data_coarse["dino_features"].device.type, enabled=False):
dino_module.fit_visualization(_data_coarse["dino_features"].float().flatten(0, -2))
_data_coarse["vis_batch_dino_features"] = [
dino_module.transform_visualization(_data_coarse["dino_features"], norm=True, from_dim=0),
dino_module.transform_visualization(_data_coarse["dino_features"], norm=True, from_dim=3),
dino_module.transform_visualization(_data_coarse["dino_features"], norm=True, from_dim=6),
]
#_data_coarse["vis_batch_dino_features_kmeans"] = dino_module.fit_transform_kmeans_visualization(_data_coarse["dino_features"])
data = self.renderer.net.downstream_head.forward_training(data, visualize=not self.training and hasattr(self, "validation_tag") and self.validation_tag == "visualization_seg")
return data
def forward_downstream(self, data, id_encoder):
data = dict(data)
images = torch.stack(data["imgs"], dim=1) # B, n_framnes, c, h, w
poses = torch.stack(data["poses"], dim=1) # B, n_framnes, 4, 4 w2c
projs = torch.stack(data["projs"], dim=1) # B, n_frames, 4, 4 (-1, 1)
n, n_frames, c, h, w = images.shape
with autocast(enabled=False):
to_base_pose = torch.inverse(poses[:, :1, :, :])
poses = to_base_pose.expand(-1, n_frames, -1, -1) @ poses
ids_encoder = [id_encoder]
ids_loss = ids_encoder
ids_renderer = ids_encoder
ip = self.train_image_processor if self.training else self.val_image_processor
images_ip = ip(images)
self.renderer.net.compute_grid_transforms(
projs[:, ids_encoder], poses[:, ids_encoder]
)
self.renderer.net.encode(
images,
projs,
poses,
ids_encoder=ids_encoder,
ids_render=ids_renderer,
ids_loss=ids_loss,
images_alt=images_ip,
combine_ids=None,
color_frame_filter=None,
)
sampler = self.ray_sampler if self.training else self.val_sampler
renderer_scale = self.renderer.net._scale
dino_features = self.renderer.net.grid_l_loss_features[renderer_scale]
if self.artifact_field is not None:
dino_features = torch.cat(torch.broadcast_tensors(dino_features, self.artifact_field), dim=2)
all_rays, all_rgb_gt, all_dino_gt = sampler.sample(
images_ip[:, ids_loss], poses[:, ids_loss], projs[:, ids_loss], image_ids=ids_loss,
dino_features=dino_features
)
if self.artifact_field is not None:
all_dino_artifacts = all_dino_gt[:, :, self.artifact_field.shape[0]:]
all_dino_gt = all_dino_gt[:, :, :self.artifact_field.shape[0]]
else:
all_dino_artifacts = None
data["fine"], data["coarse"] = [], []
scales = list(
self.renderer.net.encoder.scales
if self.prediction_mode == "multiscale"
else [self.renderer.net.get_scale()]
)
for scale in scales:
self.renderer.net.set_scale(scale)
using_fine = self.renderer.renderer.using_fine
if scale == 0:
render_dict = self.renderer(
all_rays,
want_weights=True,
want_alphas=True,
want_rgb_samps=True,
)
else:
using_fine = self.renderer.renderer.using_fine
self.renderer.renderer.using_fine = False
render_dict = self.renderer(
all_rays,
want_weights=True,
want_alphas=True,
want_rgb_samps=False,
)
self.renderer.renderer.using_fine = using_fine
render_dict["rgb_gt"] = all_rgb_gt
render_dict["rays"] = all_rays
render_dict["dino_gt"] = all_dino_gt.float()
if all_dino_artifacts is not None:
render_dict["dino_artifacts"] = all_dino_artifacts.float()
render_dict = sampler.reconstruct(render_dict,
channels=images_ip.shape[2],
dino_channels=self.renderer.net.encoder.dino_pca_dim)
if "fine" in render_dict:
data["fine"].append(render_dict["fine"])
data["coarse"].append(render_dict["coarse"])
data["rgb_gt"] = render_dict["rgb_gt"]
data["dino_gt"] = render_dict["dino_gt"]
if "dino_artifacts" in render_dict:
data["dino_artifacts"] = render_dict["dino_artifacts"]
data["rays"] = render_dict["rays"]
dino_module = self.renderer.net.encoder
downsampling_mode = "patch" if self.training else "image"
for _data_coarse in data["coarse"]:
_data_coarse["dino_features"] = dino_module.expand_dim(_data_coarse["dino_features"])
downsampling_result = dino_module.downsample(_data_coarse["dino_features"], downsampling_mode)
if isinstance(downsampling_result, tuple):
(_data_coarse["dino_features_downsampled"],
_data_coarse["dino_features_salience_map"],
_data_coarse["dino_features_weight_map"],
_data_coarse["dino_features_per_patch_weight"]) = downsampling_result
elif downsampling_result is not None:
_data_coarse["dino_features_downsampled"] = downsampling_result
if not self.training and hasattr(self, "validation_tag") and self.validation_tag == "visualization":
for _data_coarse in data["coarse"]:
with torch.amp.autocast(_data_coarse["dino_features"].device.type, enabled=False):
dino_module.fit_visualization(_data_coarse["dino_features"].flatten(0, -2))
_data_coarse["vis_batch_dino_features"] = [
dino_module.transform_visualization(_data_coarse["dino_features"], norm=True, from_dim=0),
dino_module.transform_visualization(_data_coarse["dino_features"], norm=True, from_dim=3),
dino_module.transform_visualization(_data_coarse["dino_features"], norm=True, from_dim=6),
]
#_data_coarse["vis_batch_dino_features_kmeans"] = dino_module.fit_transform_kmeans_visualization(_data_coarse["dino_features"])
if self.training:
data["feature_volume"] = self.renderer.net.grid_f_features[0]
data["z_near"] = torch.tensor(self.ray_sampler.z_near, device=images.device)
data["z_far"] = torch.tensor(self.ray_sampler.z_far, device=images.device)
surface_sample = self.sample_3d_crop(poses, projs, data["coarse"][0]["depth"], sample_radius=self.sample_radius_3d)
if surface_sample is not None:
data["sample_surface_dino_features"], data["sample_surface_sigma"] = surface_sample
if self.training:
self._counter += 1
return data
def sample_3d_crop(self, poses, projs, depth, z_far=100, n_crops=5, n_samples=576, sample_radius=0.5, sigma_threshold=0.5):
positions_samples = []
n = projs.size(0)
oversampling = 4
for n_ in range(n):
focals = projs[n_, :1, [0, 1], [0, 1]]
centers = projs[n_, :1, [0, 1], [2, 2]]
_, _, height, width = depth.shape
rays, _ = util.gen_rays(
poses[n_, :1].view(-1, 4, 4),
width,
height,
focal=focals,
c=centers,
z_near=0,
z_far=0,
norm_dir=True,
)
current_depth = depth[n_, 0] # [h, w]
limits = torch.quantile(current_depth[current_depth < z_far], torch.range(0, 1, 1/n_crops).cuda())
sampled_positions = []
for i in range(n_crops):
valid_positions = torch.nonzero((current_depth > limits[i]) & (current_depth < limits[i+1]), as_tuple=False)
if valid_positions.size(0) > 0: # Not enough samples in depth range
sampled_positions.append(valid_positions[torch.randint(valid_positions.size(0), (1,)).item()])
n_crops = len(sampled_positions)
if n_crops > 0:
sampled_positions = torch.stack(sampled_positions, dim=0)
cam_centers = rays[0, :, :, :3] # [h, w, 3]
cam_raydir = rays[0, :, :, 3:6] # [h, w, 3]
depth_crop = current_depth[sampled_positions[:, 0], sampled_positions[:, 1]] # [n_crops]
cam_centers_crop = cam_centers[sampled_positions[:, 0], sampled_positions[:, 1]] # [n_crops, 3]
cam_raydir_crop = cam_raydir[sampled_positions[:, 0], sampled_positions[:, 1]] # [n_crops, 3]
positions_crop = cam_centers_crop + cam_raydir_crop * depth_crop.unsqueeze(-1) # [n_crops, 3]
# Sample in unit sphere
unit_vecs = torch.randn(n_crops, oversampling*n_samples, 3, device=positions_crop.device) # [n_crops, n_samples, 3]
unit_vecs /= torch.norm(unit_vecs, dim=2, keepdim=True)
radii = sample_radius * torch.rand(n_crops, oversampling*n_samples, 1).cuda() ** (1/3)
# Scale radius in view space
# radii = radii * depth_crop[:, None, None] / 20.0
random_shifts = unit_vecs * radii
positions_samples.append(positions_crop.unsqueeze(1) + random_shifts) # [n_crops, n_samples, 3]
if not positions_samples:
return None, None
positions_samples = torch.stack(positions_samples, dim=0) # [n, n_crops, n_samples, 3]
_, _, sigma, _, state_dict = self.renderer.net(positions_samples.flatten(1, -2)) # [n, n_crops*n_samples, ...]
sigma = sigma.view(n * n_crops, oversampling*n_samples)
dino = state_dict["dino_features"].view(n * n_crops, oversampling * n_samples, -1)
valid_samples = sigma > sigma_threshold
valid_crop = valid_samples.sum(-1) > n_samples
if valid_crop.sum() == 0:
return None, None
# Keep only crops with enough valid samples
sigma = sigma[valid_crop]
dino = dino[valid_crop]
# For each crop, take the first n_samples valid samples
sigma = torch.stack([s[mask][:n_samples] for s, mask in zip(sigma, valid_samples[valid_crop])]).unsqueeze(0).unsqueeze(-1)
dino = torch.stack([d[mask][:n_samples] for d, mask in zip(dino, valid_samples[valid_crop])]).unsqueeze(0)
return self.renderer.net.encoder.expand_dim(dino), 1 - torch.exp(-sigma)
def train(self, mode=True):
super().train(False)
self.renderer.net.downstream_head.train(mode)
def parameters(self, recurse=True):
return self.renderer.net.downstream_head.parameters(recurse)
def parameters_lr(self):
return self.renderer.net.downstream_head.parameters_lr()
def update_model_eval(self, metrics):
self.renderer.net.downstream_head.update_model_eval(metrics)
def training(local_rank, config, sweep_trial=None):
return base_training(
local_rank,
config,
get_dataflow,
initialize,
sweep_trial,
)
def initialize(config: dict):
# Continue if checkpoint already exists
if config["training"].get("continue", False):
prefix = "training_checkpoint_"
ckpts = Path(config["output"]["path"]).glob(f"{prefix}*.pt")
# TODO: probably correct logic but please check
training_steps = [int(ckpt.stem.split(prefix)[1]) for ckpt in ckpts]
if training_steps:
config["training"]["resume_from"] = (
Path(config["output"]["path"]) / f"{prefix}{max(training_steps)}.pt"
)
if config["training"].get("continue", False) and config["training"].get(
"resume_from", None
):
config_path = Path(config["output"]["path"])
logger.info(f"Loading model config from {config_path}")
load_model_config(config_path, config)
net = make_model(config["model"], config["downstream"])
renderer = NeRFRenderer.from_conf(config["renderer"])
renderer = renderer.bind_parallel(net, gpus=None).eval()
mode = config.get("mode", "depth")
ray_sampler = get_ray_sampler(config["training"]["ray_sampler"])
model = BTSDownstreamWrapper(renderer, ray_sampler, config["model"], mode == "nvs")
model = idist.auto_model(model)
# TODO: make optimizer itself configurable configurable
if config["training"].get("optimizer", None):
optim_args = config["training"]["optimizer"]["args"].copy()
optim_lr = optim_args.pop("lr")
optimizer = optim.Adam(
[
{"params": params, "lr": lr_factor * optim_lr}
for lr_factor, params in model.parameters_lr()
],
**optim_args
)
optimizer = idist.auto_optim(optimizer)
else:
optimizer = None
if config["training"].get("scheduler", None):
lr_scheduler = make_scheduler(config["training"].get("scheduler", {}), optimizer)
else:
lr_scheduler = None
criterion = [
make_loss(config_loss)
for config_loss in config["training"].get("loss", [])
]
return model, optimizer, criterion, lr_scheduler
|