File size: 16,041 Bytes
9e15541
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
import logging
from pathlib import Path

import ignite.distributed as idist
import torch
from torch import optim

from scenedino.losses import make_loss
from scenedino.common.ray_sampler import (
    RaySampler,
    get_ray_sampler,
)
from scenedino.common.io.configs import load_model_config

from scenedino.models import make_model
from scenedino.training.trainer import BTSWrapper, get_dataflow

from scenedino.training.base_trainer import base_training
from scenedino.common.scheduler import make_scheduler
from scenedino.renderer import NeRFRenderer
from scenedino.common import util

from torch.cuda.amp import autocast

logger = logging.getLogger("training")


class BTSDownstreamWrapper(BTSWrapper):
    def __init__(
        self, renderer: NeRFRenderer, ray_sampler: RaySampler, config, eval_nvs=False, dino_channels=None
    ) -> None:
        super().__init__(renderer, ray_sampler, config, eval_nvs, dino_channels)
        for param in super().parameters(True):
            param.requires_grad_(False)
        for param in renderer.net.downstream_head.parameters(True):
            param.requires_grad_(True)

        self.sample_radius_3d = config.get("sample_radius_3d", 0.5)

    def forward(self, data):
        with torch.no_grad():
            # TODO: CLEAN THIS UP
            if self.renderer.net.downstream_head.training and len(data["imgs"]) > 1 and torch.rand(1).item() < 0.5:
                # side view
                encode_id = torch.randint(low=4, high=8, size=(1,)).item()
                # Segmentation only present in front view
                data.pop("segs")
            else:
                encode_id = 0

            data["imgs"] = [data["imgs"][encode_id]]
            data["projs"] = [data["projs"][encode_id]]
            data["poses"] = [data["poses"][encode_id]]

            data = self.forward_downstream(data, id_encoder=0)
            if not self.renderer.net.downstream_head.training and hasattr(self, "validation_tag") and self.validation_tag == "visualization_seg":
                dino_module = self.renderer.net.encoder
                dino_module.visualization.n_kmeans_clusters = 19
                for _data_coarse in data["coarse"]:
                    with torch.amp.autocast(_data_coarse["dino_features"].device.type, enabled=False):
                        dino_module.fit_visualization(_data_coarse["dino_features"].float().flatten(0, -2))
                    _data_coarse["vis_batch_dino_features"] = [
                        dino_module.transform_visualization(_data_coarse["dino_features"], norm=True, from_dim=0),
                        dino_module.transform_visualization(_data_coarse["dino_features"], norm=True, from_dim=3),
                        dino_module.transform_visualization(_data_coarse["dino_features"], norm=True, from_dim=6),
                    ]
                    #_data_coarse["vis_batch_dino_features_kmeans"] = dino_module.fit_transform_kmeans_visualization(_data_coarse["dino_features"])

        data = self.renderer.net.downstream_head.forward_training(data, visualize=not self.training and hasattr(self, "validation_tag") and self.validation_tag == "visualization_seg")
        return data

    def forward_downstream(self, data, id_encoder):
        data = dict(data)
        images = torch.stack(data["imgs"], dim=1)  # B, n_framnes, c, h, w
        poses = torch.stack(data["poses"], dim=1)  # B, n_framnes, 4, 4 w2c
        projs = torch.stack(data["projs"], dim=1)  # B, n_frames, 4, 4 (-1, 1)

        n, n_frames, c, h, w = images.shape

        with autocast(enabled=False):
            to_base_pose = torch.inverse(poses[:, :1, :, :])
            poses = to_base_pose.expand(-1, n_frames, -1, -1) @ poses

        ids_encoder = [id_encoder]
        ids_loss = ids_encoder
        ids_renderer = ids_encoder

        ip = self.train_image_processor if self.training else self.val_image_processor
        images_ip = ip(images)

        self.renderer.net.compute_grid_transforms(
            projs[:, ids_encoder], poses[:, ids_encoder]
        )
        self.renderer.net.encode(
            images,
            projs,
            poses,
            ids_encoder=ids_encoder,
            ids_render=ids_renderer,
            ids_loss=ids_loss,
            images_alt=images_ip,
            combine_ids=None,
            color_frame_filter=None,
        )

        sampler = self.ray_sampler if self.training else self.val_sampler

        renderer_scale = self.renderer.net._scale
        dino_features = self.renderer.net.grid_l_loss_features[renderer_scale]

        if self.artifact_field is not None:
            dino_features = torch.cat(torch.broadcast_tensors(dino_features, self.artifact_field), dim=2)
            
        all_rays, all_rgb_gt, all_dino_gt = sampler.sample(
            images_ip[:, ids_loss], poses[:, ids_loss], projs[:, ids_loss], image_ids=ids_loss,
            dino_features=dino_features
        )

        if self.artifact_field is not None:
            all_dino_artifacts = all_dino_gt[:, :, self.artifact_field.shape[0]:]
            all_dino_gt = all_dino_gt[:, :, :self.artifact_field.shape[0]]
        else:
            all_dino_artifacts = None

        data["fine"], data["coarse"] = [], []

        scales = list(
            self.renderer.net.encoder.scales
            if self.prediction_mode == "multiscale"
            else [self.renderer.net.get_scale()]
        )

        for scale in scales:
            self.renderer.net.set_scale(scale)

            using_fine = self.renderer.renderer.using_fine

            if scale == 0:
                render_dict = self.renderer(
                    all_rays,
                    want_weights=True,
                    want_alphas=True,
                    want_rgb_samps=True,
                )
            else:
                using_fine = self.renderer.renderer.using_fine
                self.renderer.renderer.using_fine = False
                render_dict = self.renderer(
                    all_rays,
                    want_weights=True,
                    want_alphas=True,
                    want_rgb_samps=False,
                )
                self.renderer.renderer.using_fine = using_fine

            render_dict["rgb_gt"] = all_rgb_gt
            render_dict["rays"] = all_rays
            render_dict["dino_gt"] = all_dino_gt.float()

            if all_dino_artifacts is not None:
                render_dict["dino_artifacts"] = all_dino_artifacts.float()

            render_dict = sampler.reconstruct(render_dict,
                                              channels=images_ip.shape[2],
                                              dino_channels=self.renderer.net.encoder.dino_pca_dim)

            if "fine" in render_dict:
                data["fine"].append(render_dict["fine"])
            data["coarse"].append(render_dict["coarse"])
            data["rgb_gt"] = render_dict["rgb_gt"]
            data["dino_gt"] = render_dict["dino_gt"]
            if "dino_artifacts" in render_dict:
                data["dino_artifacts"] = render_dict["dino_artifacts"]
            data["rays"] = render_dict["rays"]

            dino_module = self.renderer.net.encoder
            downsampling_mode = "patch" if self.training else "image"
            for _data_coarse in data["coarse"]:
                _data_coarse["dino_features"] = dino_module.expand_dim(_data_coarse["dino_features"])
                downsampling_result = dino_module.downsample(_data_coarse["dino_features"], downsampling_mode)
                if isinstance(downsampling_result, tuple):
                    (_data_coarse["dino_features_downsampled"],
                     _data_coarse["dino_features_salience_map"],
                     _data_coarse["dino_features_weight_map"],
                     _data_coarse["dino_features_per_patch_weight"]) = downsampling_result
                elif downsampling_result is not None:
                    _data_coarse["dino_features_downsampled"] = downsampling_result

            if not self.training and hasattr(self, "validation_tag") and self.validation_tag == "visualization":
                for _data_coarse in data["coarse"]:
                    with torch.amp.autocast(_data_coarse["dino_features"].device.type, enabled=False):
                        dino_module.fit_visualization(_data_coarse["dino_features"].flatten(0, -2))
                    _data_coarse["vis_batch_dino_features"] = [
                        dino_module.transform_visualization(_data_coarse["dino_features"], norm=True, from_dim=0),
                        dino_module.transform_visualization(_data_coarse["dino_features"], norm=True, from_dim=3),
                        dino_module.transform_visualization(_data_coarse["dino_features"], norm=True, from_dim=6),
                    ]
                    #_data_coarse["vis_batch_dino_features_kmeans"] = dino_module.fit_transform_kmeans_visualization(_data_coarse["dino_features"])


        if self.training:
            data["feature_volume"] = self.renderer.net.grid_f_features[0]

        data["z_near"] = torch.tensor(self.ray_sampler.z_near, device=images.device)
        data["z_far"] = torch.tensor(self.ray_sampler.z_far, device=images.device)

        surface_sample = self.sample_3d_crop(poses, projs, data["coarse"][0]["depth"], sample_radius=self.sample_radius_3d)
        if surface_sample is not None:
            data["sample_surface_dino_features"], data["sample_surface_sigma"] = surface_sample

        if self.training:
            self._counter += 1

        return data

    def sample_3d_crop(self, poses, projs, depth, z_far=100, n_crops=5, n_samples=576, sample_radius=0.5, sigma_threshold=0.5):
        positions_samples = []
        n = projs.size(0)

        oversampling = 4
        for n_ in range(n):
            focals = projs[n_, :1, [0, 1], [0, 1]]
            centers = projs[n_, :1, [0, 1], [2, 2]]

            _, _, height, width = depth.shape
            rays, _ = util.gen_rays(
                poses[n_, :1].view(-1, 4, 4),
                width,
                height,
                focal=focals,
                c=centers,
                z_near=0,
                z_far=0,
                norm_dir=True,
            )
            current_depth = depth[n_, 0]  # [h, w]
            limits = torch.quantile(current_depth[current_depth < z_far], torch.range(0, 1, 1/n_crops).cuda())
            
            sampled_positions = []
            for i in range(n_crops):
                valid_positions = torch.nonzero((current_depth > limits[i]) & (current_depth < limits[i+1]), as_tuple=False)
                if valid_positions.size(0) > 0:  # Not enough samples in depth range
                    sampled_positions.append(valid_positions[torch.randint(valid_positions.size(0), (1,)).item()])

            n_crops = len(sampled_positions)
            if n_crops > 0:
                sampled_positions = torch.stack(sampled_positions, dim=0)

                cam_centers = rays[0, :, :, :3]  # [h, w, 3]
                cam_raydir = rays[0, :, :, 3:6]  # [h, w, 3]

                depth_crop = current_depth[sampled_positions[:, 0], sampled_positions[:, 1]]      # [n_crops]
                cam_centers_crop = cam_centers[sampled_positions[:, 0], sampled_positions[:, 1]]  # [n_crops, 3]
                cam_raydir_crop = cam_raydir[sampled_positions[:, 0], sampled_positions[:, 1]]    # [n_crops, 3]

                positions_crop = cam_centers_crop + cam_raydir_crop * depth_crop.unsqueeze(-1)  # [n_crops, 3]
                                
                # Sample in unit sphere
                unit_vecs = torch.randn(n_crops, oversampling*n_samples, 3, device=positions_crop.device)   # [n_crops, n_samples, 3]
                unit_vecs /= torch.norm(unit_vecs, dim=2, keepdim=True)
                radii = sample_radius * torch.rand(n_crops, oversampling*n_samples, 1).cuda() ** (1/3)

                # Scale radius in view space
                # radii = radii * depth_crop[:, None, None] / 20.0

                random_shifts = unit_vecs * radii
                positions_samples.append(positions_crop.unsqueeze(1) + random_shifts)           # [n_crops, n_samples, 3]

        if not positions_samples:
            return None, None

        positions_samples = torch.stack(positions_samples, dim=0)  # [n, n_crops, n_samples, 3]

        _, _, sigma, _, state_dict = self.renderer.net(positions_samples.flatten(1, -2))  # [n, n_crops*n_samples, ...]
        sigma = sigma.view(n * n_crops, oversampling*n_samples)
        dino = state_dict["dino_features"].view(n * n_crops, oversampling * n_samples, -1)

        valid_samples = sigma > sigma_threshold
        valid_crop = valid_samples.sum(-1) > n_samples

        if valid_crop.sum() == 0:
            return None, None

        # Keep only crops with enough valid samples
        sigma = sigma[valid_crop]  
        dino = dino[valid_crop]

        # For each crop, take the first n_samples valid samples
        sigma = torch.stack([s[mask][:n_samples] for s, mask in zip(sigma, valid_samples[valid_crop])]).unsqueeze(0).unsqueeze(-1)
        dino = torch.stack([d[mask][:n_samples] for d, mask in zip(dino, valid_samples[valid_crop])]).unsqueeze(0)

        return self.renderer.net.encoder.expand_dim(dino), 1 - torch.exp(-sigma)

    def train(self, mode=True):
        super().train(False)
        self.renderer.net.downstream_head.train(mode)

    def parameters(self, recurse=True):
        return self.renderer.net.downstream_head.parameters(recurse)
    
    def parameters_lr(self):
        return self.renderer.net.downstream_head.parameters_lr()

    def update_model_eval(self, metrics):
        self.renderer.net.downstream_head.update_model_eval(metrics)


def training(local_rank, config, sweep_trial=None):
    return base_training(
        local_rank,
        config,
        get_dataflow,
        initialize,
        sweep_trial,
    )


def initialize(config: dict):
    # Continue if checkpoint already exists
    if config["training"].get("continue", False):
        prefix = "training_checkpoint_"
        ckpts = Path(config["output"]["path"]).glob(f"{prefix}*.pt")
        # TODO: probably correct logic but please check
        training_steps = [int(ckpt.stem.split(prefix)[1]) for ckpt in ckpts]
        if training_steps:
            config["training"]["resume_from"] = (
                Path(config["output"]["path"]) / f"{prefix}{max(training_steps)}.pt"
            )

    if config["training"].get("continue", False) and config["training"].get(
        "resume_from", None
    ):
        config_path = Path(config["output"]["path"])
        logger.info(f"Loading model config from {config_path}")
        load_model_config(config_path, config)

    net = make_model(config["model"], config["downstream"])
    renderer = NeRFRenderer.from_conf(config["renderer"])
    renderer = renderer.bind_parallel(net, gpus=None).eval()

    mode = config.get("mode", "depth")

    ray_sampler = get_ray_sampler(config["training"]["ray_sampler"])

    model = BTSDownstreamWrapper(renderer, ray_sampler, config["model"], mode == "nvs")
    model = idist.auto_model(model)

    # TODO: make optimizer itself configurable configurable
    if config["training"].get("optimizer", None):
        optim_args = config["training"]["optimizer"]["args"].copy()
        optim_lr = optim_args.pop("lr")
        optimizer = optim.Adam(
            [
                {"params": params, "lr": lr_factor * optim_lr}
                for lr_factor, params in model.parameters_lr()
            ],
            **optim_args
        )
        optimizer = idist.auto_optim(optimizer)
    else:
        optimizer = None

    if config["training"].get("scheduler", None):
        lr_scheduler = make_scheduler(config["training"].get("scheduler", {}), optimizer)
    else:
        lr_scheduler = None

    criterion = [
        make_loss(config_loss)
        for config_loss in config["training"].get("loss", [])
    ]

    return model, optimizer, criterion, lr_scheduler