File size: 36,969 Bytes
9e15541
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
import argparse
import sys
import random
import time

from omegaconf import open_dict

import matplotlib.pyplot as plt

sys.path.extend([".", ".."])

from generate_ply_sequence import get_cam_k
from point_utils import read_calib, generate_point_grid, get_fov_mask
from gen_voxelgrid_npy import save_as_voxel_ply, remove_invisible

import logging

from pathlib import Path
import subprocess
import yaml

import cv2
import os
import numpy as np
from tqdm import tqdm
import pickle
import torch
from torch import nn
import torch.nn.functional as F
from hydra import compose, initialize

import matplotlib.pyplot as plt

from sscbench_dataset import SSCBenchDataset
from pathlib import Path

from scipy.optimize import linear_sum_assignment
import torchvision


RELOAD_DATASET = True
DATASET_LENGTH = 10
FULL_EVAL = True
SAMPLE_EVERY = None
SAMPLE_OFFSET = 2
SAMPLE_RANGE = None

SIZE = 51.2 # Can be: 51.2, 25.6, 12.8
SIZES = (12.8, 25.6, 51.2)
VOXEL_SIZE = 0.2 # Needs: 0.2 % VOXEL_SIZE == 0

USE_ADDITIONAL_INVALIDS = True

TEST_ALPHA_CUTOFFS = False
SEARCH_VALUES = [10e-1, 10e-2, 10e-3, 10e-4, 10e-5, 10e-6, 10e-7]

SIGMA_CUTOFF = 0.2

USE_ALPHA_WEIGHTING = True
USE_GROW = True

CREATE_SIGMA_TRADEOFF_PLOT = True
SIGMA_VALUES = [1, 0.5, 0.25, 0.1, 0.05, 0.025, 0.01, 0.005, 0.0025, 0.001]

PLOT_ALL_IMAGES = False

GENERATE_PLY_FILES = False
PLY_ONLY_FOV = True
PLY_IDS = [300, 400, 470]
OUTPUT_PATH = Path("<PATH-OUTPUT>")
PLY_SIZES = [25.6, 51.2]

GENERATE_STATISTICS = False

# For ply generation:
# USE_ADDITIONAL_INVALIDS = False
# USE_GROW = False
# GENERATE_PLY_FILES = True

os.system("nvidia-smi")

device = f'cuda:0'

# DO NOT TOUCH OR YOU WILL BREAK RUNS (should be None)
gpu_id = None

if gpu_id is not None:
    print("GPU ID: " + str(gpu_id))
    os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
    os.environ["CUDA_VISIBLE_DEVICES"] = str(gpu_id)
if torch.cuda.is_available():
    torch.backends.cudnn.enabled = True
    torch.backends.cudnn.benchmark = True
    torch.backends.cudnn.deterministic = True

logging.basicConfig(level=logging.INFO)


def main():
    parser = argparse.ArgumentParser("SSCBenchmark Output generation")
    parser.add_argument("--sscbench_data_root", "-ssc", type=str)
    parser.add_argument("--voxel_gt_path", "-vgt", type=str)
    parser.add_argument("--resolution", "-r", default=(192, 640))
    parser.add_argument("--checkpoint", "-cp", type=str, required=True)
    parser.add_argument("--full", "-f", action="store_true")
    parser.add_argument("--mode", "-m", default="s4c")
    parser.add_argument("--ply_checkname", "-p", default="none")

    args = parser.parse_args()

    sscbench_data_root = args.sscbench_data_root
    voxel_gt_path = args.voxel_gt_path
    resolution = args.resolution
    cp_path = args.checkpoint
    full_evaluation = args.full
    mode = args.mode
    ply_checkname = args.ply_checkname

    if FULL_EVAL:
        full_evaluation = True

    if GENERATE_PLY_FILES:
        assert (not USE_GROW) and (not USE_ADDITIONAL_INVALIDS) # and VOXEL_SIZE == 0.1

        # make the necessary dirs
        for size in PLY_SIZES:
            if not os.path.exists(OUTPUT_PATH / ply_checkname / str(int(size))):
                os.makedirs(OUTPUT_PATH / ply_checkname / str(int(size)))

    if not os.path.exists(OUTPUT_PATH / ply_checkname):
        os.makedirs(OUTPUT_PATH / ply_checkname)

    logging.info(f"Using a sigma cutoff of {SIGMA_CUTOFF}")
    logging.info("Setting up dataset")

    with open("label_maps.yaml", "r") as f:
        label_maps = yaml.safe_load(f)

    # pickle the dataset so we don't have to wait all the time
    if os.path.isfile("dataset.pkl") and not RELOAD_DATASET:
        logging.info("Loading dataset from dataset.pkl file.")
        with open("dataset.pkl", "rb") as f:
            dataset = pickle.load(f)
    else:
        logging.info("Generating the dataset and dumping it to dataset.pkl")
        dataset = SSCBenchDataset(
            data_path=sscbench_data_root,
            voxel_gt_path=voxel_gt_path,
            sequences=(9,),
            target_image_size=resolution,
            return_stereo=False,
            frame_count=1,
            color_aug=False,
            load_fisheye=True,
            fisheye_offset=10,
        )
        if DATASET_LENGTH and not full_evaluation:
            dataset.length = DATASET_LENGTH

        with open("dataset.pkl", 'wb') as f:
            pickle.dump(dataset, f)

    logging.info("Setting up the model...")

    config_path = "exp_kitti_360"

    cp_path = Path(cp_path)
    if cp_path.suffix == ".pt":
        cp_root_path = cp_path.parent
    else:
        cp_root_path = cp_path
        cp_path = next(cp_root_path.glob("training*.pt"))

    bts_dino_config_path = "training_config.yaml"

    PRODUCE_FEAT_VIS = GENERATE_PLY_FILES and mode.startswith("scenedino")
    prediction_mode = None
    if mode == "s4c":
        from models.bts.model import BTSNet
        from models.common.render import NeRFRenderer
        
        initialize(version_base=None, config_path="../../../configs", job_name="gen_sscbench_outputs")
        config = compose(config_name=config_path, overrides=[])

        logging.info('Loading checkpoint')
        cp = torch.load(cp_path, map_location=device)

        with open_dict(config):
            config["renderer"]["hard_alpha_cap"] = True
            config["model_conf"]["code_mode"] = "z"
            # config["model_conf"]["z_near"] = 8
            config["model_conf"]["mlp_coarse"]["n_blocks"] = 0
            config["model_conf"]["mlp_coarse"]["d_hidden"] = 64
            config["model_conf"]["encoder"]["d_out"] = 64
            config["model_conf"]["encoder"]["type"] = "monodepth2"
            config["model_conf"]["grid_learn_empty"] = False
            config["model_conf"]["sample_color"] = True

            # stuff for segmentation
            config["model_conf"]["segmentation_mode"] = "panoptic_deeplab"

        net = BTSNet(config["model_conf"])
        net.sample_color = False
        renderer = NeRFRenderer.from_conf(config["renderer"])
        renderer = renderer.bind_parallel(net, gpus=None).eval()
        renderer.renderer.n_coarse = 64
        renderer.renderer.lindisp = True

        class _Wrapper(nn.Module):
            def __init__(self):
                super().__init__()
                self.renderer = renderer

        _wrapper = _Wrapper()

        _wrapper.load_state_dict(cp["model"], strict=False)
        renderer.to(device)
        renderer.eval()

    elif mode.startswith("scenedino"):
        from scenedino.models import make_model as dino_bts_make_model
        from scenedino.renderer.nerf import NeRFRenderer as dino_bts_NeRFRenderer
        from scenedino.common.ray_sampler import ImageRaySampler as dino_bts_ImageRaySampler

        bts_dino_parent_relative = Path("../../../../")
        bts_dino_parent_absolute = str(bts_dino_parent_relative.resolve())
        initialize(version_base=None,
                   config_path=str(bts_dino_parent_relative / cp_root_path.relative_to(bts_dino_parent_absolute)),
                   job_name="gen_sscbench_outputs")
        config = compose(config_name=bts_dino_config_path, overrides=[])

        logging.info('Loading checkpoint')
        cp = torch.load(cp_path, map_location=device)

        net = dino_bts_make_model(config["model"], config["downstream"])
        renderer = dino_bts_NeRFRenderer.from_conf(config["renderer"])
        renderer.hard_alpha_cap = False
        renderer = renderer.bind_parallel(net, gpus=None).eval()

        class _Wrapper(nn.Module):
            def __init__(self):
                super().__init__()
                self.renderer = renderer

        _wrapper = _Wrapper()
        _wrapper.load_state_dict(cp, strict=False)  # _wrapper.load_state_dict(cp["model"], strict=False)
        renderer.to(device)
        renderer.eval()

        height, width = config["dataset"]["image_size"]
        ray_sampler = dino_bts_ImageRaySampler(z_near=3, z_far=80, width=width, height=height)

        if mode == "scenedino_linear":
            prediction_mode = "direct_linear"
        elif mode == "scenedino_direct_cluster":
            prediction_mode = "direct_kmeans"
        else:
            prediction_mode = "stego_kmeans"

    else:
        raise NotImplementedError()

    logging.info("Loading the Lidar to Camera matrices...")

    calib = read_calib()
    T_velo_2_cam = calib["Tr"]

    logging.info("Generating the point cloud...")

    pts, _ = generate_point_grid(vox_origin=np.array([0, -25.6, -2]),
                              scene_size=(51.2, 51.2, 6.4),
                              voxel_size=VOXEL_SIZE,
                              cam_E=T_velo_2_cam,
                              cam_k=get_cam_k())

    fov_mask = get_fov_mask()

    pts = torch.tensor(pts).to(device).reshape(1, -1, 3).float()
    fov_mask = fov_mask.reshape(256, 256, 32)

    logging.info("Setting up folders...")

    downsample_factor = int(0.2 // VOXEL_SIZE)

    results = {}
    for size in SIZES:
        results[size] = {
            "tp": 0,
            "fp": 0,
            "tn": 0,
            "fn": 0,
            "tp_seg": np.zeros(15),
            "fp_seg": np.zeros(15),
            "tn_seg": np.zeros(15),
            "fn_seg": np.zeros(15),
            "confusion_seg": np.zeros((16, 16)),
            "tp_recall_seg": np.zeros(15),
            "sum_recall_seg": np.zeros(15),
        }

    # for the sigma tradeoff plots
    trade_off_values = np.zeros([len(SIGMA_VALUES), 4])

    cutoff_results = {i: {sv: {"tp":0, "fp": 0, "tn": 0, "fn": 0} for sv in SEARCH_VALUES} for i in range(1, 16)}

    pbar = tqdm(range(len(dataset)))

    # Randomly select indices without replacement
    # dataset_size = len(dataset)
    # subset_size = dataset_size // 10
    # subset_indices = random.sample(range(dataset_size), subset_size)
    # pbar = tqdm(subset_indices)

    images = {"ids": [], "images": []}

    ids = [125, 280, 960, 1000, 1150, 1325, 2300, 3175, 3750, 4300, 5155, 5475, 5750, 6475, 6525, 6670, 6775, 7500, 7860, 8000, 8350, 9000, 9350, 10975]

    ids = [60, 250, 455, 690, 835, 2235, 2385, 2495, 3385, 4235, 4360, 4550, 4875, 5550, 6035, 7010, 7110, 8575, 9010, 9410, 11260, 11460, 11885]

    # for our statistics
    tframeIds = []
    tinval = []
    ttp = []
    tfp = []
    ttn = []
    tfn = []

    # plot_image_at_frame_id(dataset, 952)
    for i in pbar:
        if SAMPLE_EVERY:
            if (i - SAMPLE_OFFSET) % SAMPLE_EVERY != 0:
                continue

        sequence, id, is_right = dataset._datapoints[i]

        if SAMPLE_RANGE:
            if id not in SAMPLE_RANGE:
                continue

        if GENERATE_PLY_FILES and id not in PLY_IDS:
            continue

        if GENERATE_STATISTICS:
            tframeIds.append(id)

        data = dataset[i]

        torch.cuda.empty_cache()
        torch.cuda.reset_peak_memory_stats()
        torch.cuda.synchronize()
        start_time = time.time()

        # downsample the sigmas
        sigmas, segs, dino = downsample_and_predict(data, net, pts, downsample_factor, prediction_mode, vis=GENERATE_PLY_FILES, feat_vis=PRODUCE_FEAT_VIS)

        torch.cuda.synchronize()
        inference_time = time.time() - start_time
        memory_used = torch.cuda.max_memory_allocated(device) / 1024**2  # in MB
        num_params = sum(p.numel() for key, p in net.named_parameters() if not key.startswith("encoder.gt_encoder"))

        #print(f"Inference time: {inference_time:.6f} seconds")
        #print(f"Memory used: {memory_used:.2f} MB")
        #print(f"Number of parameters: {num_params:,}")

        # convert both to the right format
        segs = convert_voxels(segs, label_maps["cityscapes_to_label"])
        target = convert_voxels(data["voxel_gt"][0].astype(int), label_maps["sscbench_to_label"])

        is_occupied_seg = torch.Tensor(sigmas > SIGMA_CUTOFF).to(torch.bool)
        is_occupied_seg = remove_invisible(is_occupied_seg)
        #raise ValueError(is_occupied_seg, segs)  
        is_occupied_seg[segs==0] = False

        images = torch.stack([torch.Tensor(_img) for _img in data["imgs"]], dim=0).cuda()
        if PRODUCE_FEAT_VIS:
            dino = calculate_pca(dino, is_occupied_seg, net)
            dino = (255*dino).astype(int)

            poses = torch.stack([torch.Tensor(_pose) for _pose in data["poses"]], dim=0).unsqueeze(0).cuda()
            projs = torch.stack([torch.Tensor(_proj) for _proj in data["projs"]], dim=0).unsqueeze(0).cuda()

            poses = torch.inverse(poses[:, :1]) @ poses

            all_rays, _ = ray_sampler.sample(None, poses, projs)
            render_dict = renderer(all_rays[:, :], want_weights=True, want_alphas=True)
            render_dict = ray_sampler.reconstruct(render_dict)
            dino_features = net.encoder.expand_dim(render_dict["coarse"]["dino_features"]).squeeze()

            dino_gt = net.encoder.gt_encoder(images / 2 + 0.5)[-1].permute(0, 2, 3, 1)
            dino_gt = F.normalize(dino_gt, dim=-1)

            dino_rgb_vis = torch.clamp(net.encoder.transform_visualization(dino_features.cpu()), min=-0.5, max=0.5) + 0.5
            dino_rgb_vis_gt = torch.clamp(net.encoder.transform_visualization(dino_gt.cpu()), min=-0.5, max=0.5) + 0.5
            dino_rgb_vis_gt = dino_rgb_vis_gt.repeat_interleave(8, 1).repeat_interleave(8, 2)

        if PLOT_ALL_IMAGES:
            images["ids"].append(id)
            images["images"].append(((data["imgs"][0] + 1) / 2).permute(1, 2, 0))

            if len(images["ids"]) == 6:
                plot_images(images)
                images = {"images": [], "ids": []}

        # print(f"Image_Id: {id}")
        #
        # plt.imshow(((data["imgs"][0] + 1) / 2).permute(1, 2, 0))
        # plt.show()
        #
        # out_dict = {"sigmas": sigmas, "segs": segs.copy(), "gt": target, "fov_mask": fov_mask}
        #
        # with open(f'plots10_40/{id:06d}.pkl', 'wb') as f:
        #     pickle.dump(out_dict, f)

        if GENERATE_PLY_FILES:
            _segs = segs.copy()
            _target = target.copy()
            if PRODUCE_FEAT_VIS:
                _dino = dino.copy()

            mask = target != 255
            if PLY_ONLY_FOV:
                mask = mask & fov_mask

            seg_mask = mask.copy()
            for dim in range(seg_mask.ndim):
                seg_mask = np.repeat(seg_mask, downsample_factor, axis=dim)

            # _segs[~seg_mask] = 0
            # _dino[~seg_mask] = 0
            _target[~mask] = 0

            is_occupied_seg = is_occupied_seg.logical_and(torch.Tensor(fov_mask))
            # is_occupied_seg = torch.tensor(_segs > 0)
            is_occupied_gt = torch.tensor(_target > 0)

            full_num_voxels = int(SIZE // VOXEL_SIZE)

            for idx in range(images.size(0)):
                torchvision.utils.save_image(((images[idx] + 1) / 2), OUTPUT_PATH / ply_checkname / str(int(size)) / f"{id:06d}_image_{idx}.png")
                if PRODUCE_FEAT_VIS:
                    torchvision.utils.save_image(dino_rgb_vis[idx].permute(2, 0, 1), OUTPUT_PATH / ply_checkname / str(int(size)) / f"{id:06d}_features_{idx}.png")
                    torchvision.utils.save_image(dino_rgb_vis_gt[idx].permute(2, 0, 1), OUTPUT_PATH / ply_checkname / str(int(size)) / f"{id:06d}_features_gt_{idx}.png")
            images = None
            
            for size in PLY_SIZES:
                num_voxels = int(size // 0.2)
                save_as_voxel_ply(OUTPUT_PATH / ply_checkname / str(int(size)) / f"{id:06d}_gt.ply",
                                  is_occupied_gt[: num_voxels, (128 - num_voxels // 2): (128 + num_voxels // 2),:],
                                  voxel_size=0.2,
                                  classes=torch.tensor(_target[: num_voxels, (128 - num_voxels // 2): (128 + num_voxels // 2),:]))
                num_voxels = int(size // VOXEL_SIZE)
                save_as_voxel_ply(OUTPUT_PATH / ply_checkname / str(int(size)) / f"{id:06d}.ply",
                                  is_occupied_seg[: num_voxels, (full_num_voxels // 2 - num_voxels // 2): (full_num_voxels // 2 + num_voxels // 2),:],
                                  size=(num_voxels, num_voxels, num_voxels//8),
                                  voxel_size=VOXEL_SIZE,
                                  classes=torch.tensor(_segs[: num_voxels, (full_num_voxels // 2 - num_voxels // 2): (full_num_voxels // 2 + num_voxels // 2),:]))
                if PRODUCE_FEAT_VIS:
                    save_as_voxel_ply(OUTPUT_PATH / ply_checkname / str(int(size)) / f"{id:06d}_feat.ply",
                                    is_occupied_seg[: num_voxels, (full_num_voxels // 2 - num_voxels // 2): (full_num_voxels // 2 + num_voxels // 2),:],
                                    size=(num_voxels, num_voxels, num_voxels//8),
                                    voxel_size=VOXEL_SIZE,
                                    colors=torch.tensor(_dino[: num_voxels, (full_num_voxels // 2 - num_voxels // 2): (full_num_voxels // 2 + num_voxels // 2),:]))
            continue

        if USE_ADDITIONAL_INVALIDS:
            invalids = identify_additional_invalids(target)
            # logging.info(np.mean(invalids))
            target[invalids == 1] = 255

            if GENERATE_STATISTICS:
                tinval.append(np.mean(invalids))

        # test and summarize different alpha cutoffs
        if TEST_ALPHA_CUTOFFS:
            for i in range(1, 16):
                for search_value in SEARCH_VALUES:
                    _tmp = segs.copy()
                    _tmp[np.logical_and(segs == i, sigmas < search_value)] = 0
                    _tp_seg, _fp_seg, _tn_seg, _fn_seg = compute_occupancy_numbers_segmentation(
                        y_pred=_tmp, y_true=target, fov_mask=fov_mask, labels=label_maps["labels"])
                    cutoff_results[i][search_value]["tp"] += _tp_seg[i-1]
                    cutoff_results[i][search_value]["fp"] += _fp_seg[i-1]
                    cutoff_results[i][search_value]["tn"] += _tn_seg[i-1]
                    cutoff_results[i][search_value]["fn"] += _fn_seg[i-1]

        if CREATE_SIGMA_TRADEOFF_PLOT:
            for i, val in enumerate(SIGMA_VALUES):
                _tmp = segs.copy()
                _tmp[sigmas < val] = 0
                _tp, _fp, _tn, _fn = compute_occupancy_numbers(y_pred=_tmp, y_true=target, fov_mask=fov_mask)
                trade_off_values[i] += np.array([_tp, _fp, _tn, _fn])

        segs[sigmas < SIGMA_CUTOFF] = 0

        for size in SIZES:
            num_voxels = int(size // 0.2)

            # resize to right scene size
            _segs = segs[:num_voxels, (128 - num_voxels//2):(128 + num_voxels//2), :]
            _target = target[:num_voxels, (128 - num_voxels//2):(128 + num_voxels//2), :]
            _fov_mask = fov_mask[:num_voxels, (128 - num_voxels // 2):(128 + num_voxels // 2), :]

            _tp, _fp, _tn, _fn = compute_occupancy_numbers(y_pred=_segs, y_true=_target, fov_mask=_fov_mask)
            _tp_seg, _fp_seg, _tn_seg, _fn_seg, _confusion_seg = compute_occupancy_numbers_segmentation(
                y_pred=_segs, y_true=_target, fov_mask=_fov_mask, labels=label_maps["labels"])
            _tp_rec_seg, _sum_rec_seg = compute_occupancy_recall_segmentation(
                y_pred=_segs, y_true=_target, fov_mask=_fov_mask, labels=label_maps["labels"])

            if size == 51.2 and GENERATE_STATISTICS:
                ttp += [_tp]
                tfp += [_fp]
                ttn += [_fn]
                tfn += [_fn]

            results[size]["tp"] += _tp
            results[size]["fp"] += _fp
            results[size]["tn"] += _tn
            results[size]["fn"] += _fn

            results[size]["tp_seg"] += _tp_seg
            results[size]["fp_seg"] += _fp_seg
            results[size]["tn_seg"] += _tn_seg
            results[size]["fn_seg"] += _fn_seg

            results[size]["confusion_seg"] += _confusion_seg

            results[size]["tp_recall_seg"] += _tp_rec_seg
            results[size]["sum_recall_seg"] += _sum_rec_seg

            recall = results[size]["tp"] / (results[size]["tp"] + results[size]["fn"])
            precision = results[size]["tp"] / (results[size]["tp"] + results[size]["fp"])
            iou = results[size]["tp"] / (results[size]["tp"] + results[size]["fp"] + results[size]["fn"])

        pbar.set_postfix_str(f"IoU: {iou*100:.2f} Prec: {precision*100:.2f} Rec: {recall*100:.2f}")
    
    result_str = ""
    for mode in ["direct", "hungarian"]:
        results_table = np.zeros((19, 3), dtype=np.float32)

        if mode == "hungarian":
            assignments = linear_sum_assignment(results[51.2]["confusion_seg"], maximize=True)  # Hungarian matching on full range

        # Here we compute all the metrics
        for size_i, size in enumerate(SIZES):
            recall = results[size]["tp"] / (results[size]["tp"] + results[size]["fn"])
            precision = results[size]["tp"] / (results[size]["tp"] + results[size]["fp"])
            iou = results[size]["tp"] / (results[size]["tp"] + results[size]["fp"] + results[size]["fn"])

            results_table[0, size_i] = iou
            results_table[1, size_i] = precision
            results_table[2, size_i] = recall

            # logging.info(f"#" * 50)
            # logging.info(f"Results for size {size}. ")
            # logging.info(f"#" * 50)

            # logging.info("Occupancy metrics")
            # logging.info(f"Recall: {recall*100:.2f}%")
            # logging.info(f"Precision: {precision*100:.2f}%")
            # logging.info(f"IoU: {iou*100:.2f}")

            # recall_seg = results[size]["tp_seg"] / (results[size]["tp_seg"] + results[size]["fn_seg"])
            # precision_seg = results[size]["tp_seg"] / (results[size]["tp_seg"] + results[size]["fp_seg"])
            # iou_seg = results[size]["tp_seg"] / (results[size]["tp_seg"] + results[size]["fp_seg"] + results[size]["fn_seg"])
            # mean_iou = np.mean(np.nan_to_num(iou_seg))

            # Calculate hungarian matching
            confusion_matrix = results[size]["confusion_seg"]
            if mode == "hungarian":
                confusion_matrix = confusion_matrix[np.argsort(assignments[1]), :]

            confusion_matrix_tp = np.diag(confusion_matrix)
            confusion_matrix_denom = confusion_matrix.sum(0) + confusion_matrix.sum(1) - confusion_matrix_tp
            confusion_matrix_per_class_iou = confusion_matrix_tp[1:] / confusion_matrix_denom[1:]
            confusion_matrix_miou = np.mean(np.nan_to_num(confusion_matrix_per_class_iou))

            # occupancy_recall_seg = results[size]["tp_recall_seg"] / results[size]["sum_recall_seg"]

            weights = label_maps["weights"]
            weights_val = np.array(list(weights.values()))
            weighted_mean_iou = np.sum(weights_val * np.nan_to_num(confusion_matrix_per_class_iou)) / np.sum(weights_val)

            results_table[3, size_i] = confusion_matrix_miou
            results_table[4:, size_i] = confusion_matrix_per_class_iou

        row_labels = [
            "IoU", "Precision", "Recall",
            "mIoU", "car", "bicycle", "motorcycle", "truck", "other-vehicle", "person",
            "road", "sidewalk", "building", "fence", "vegetation", "terrain", "pole",
            "traffic-sign", "other-object"
        ]
        column_headers = ["12.8m", "25.6m", "51.2m"]

        result_str += f"\n# Benchmark Results for '{ply_checkname}' / Mode: {mode}\n"

        result_str += "\n|               | " + " | ".join(column_headers) + " |\n"
        result_str += "|---------------|-------|-------|-------|\n"
        for i in range(len(row_labels)):
            row_values = results_table[i]
            row_str = f"| {row_labels[i]:<13} | " + " | ".join(f"{v * 100:5.2f}" for v in row_values) + " |\n"
            result_str += row_str
            if i == 2:
                result_str += "|---------------|-------|-------|-------|\n"

        result_str += "\n"
        if mode == "hungarian":
            result_str += f"Reassignment: {np.argsort(assignments[1])}\n"
        result_str += f"Mean IoU: {confusion_matrix_miou * 100:.2f}\n"
        result_str += f"Weighted Mean IoU: {weighted_mean_iou * 100:.2f}\n\n"

    print(result_str)
    if not GENERATE_PLY_FILES:
        with open(OUTPUT_PATH / ply_checkname / "results.md", "w") as file:
            file.write(result_str)

    if TEST_ALPHA_CUTOFFS:
        cutoff_metrics = \
            {i: {sv: {"precision": np.nan_to_num(100*cutoff_results[i][sv]["tp"] / (cutoff_results[i][sv]["tp"] + cutoff_results[i][sv]["fp"])),
                       "recall": np.nan_to_num(100*cutoff_results[i][sv]["tp"] / (cutoff_results[i][sv]["tp"] + cutoff_results[i][sv]["fn"])),
                       "IoU": np.nan_to_num(100*cutoff_results[i][sv]["tp"] / (cutoff_results[i][sv]["tp"] + cutoff_results[i][sv]["fn"] + cutoff_results[i][sv]["fp"]))}
                      for sv in SEARCH_VALUES} for i in range(1, 16)}

        best_values = {i: SEARCH_VALUES[torch.argmax(torch.tensor([cutoff_metrics[i][sv]["IoU"] for sv in SEARCH_VALUES]))] for i in range(1, 16)}

        print(best_values)

    if CREATE_SIGMA_TRADEOFF_PLOT:
        plt.figure(figsize=(10, 8))
        plt.xlabel("Precision")
        plt.ylabel("Recall")
        plt.xlim([10, 70])
        # plt.ylim([0, 100])

        for i, val in enumerate(SIGMA_VALUES):
            tp, fp, tn, fn = trade_off_values[i]
            pres = 100*tp / (tp + fp)
            recall = 100*tp/ (tp + fn)
            plt.scatter(pres, recall)
            plt.annotate(f"Sigma: {val}; IoU: {100*tp / (tp + fp + fn):.2f}", (pres, recall))

        identifier = os.path.basename(cp_path)
        if FULL_EVAL:
            path = f"figures/inv{str(USE_ADDITIONAL_INVALIDS)}_{VOXEL_SIZE:.1f}_mp{str(USE_GROW)}_{identifier}.png"
        else:
            path = f"figures/inv{str(USE_ADDITIONAL_INVALIDS)}_{DATASET_LENGTH}_{VOXEL_SIZE:.1f}_mp{str(USE_GROW)}_{identifier}.png"

        if os.path.isfile(path):
            os.remove(path)
        plt.savefig(path)

        plt.show()

    if GENERATE_STATISTICS:
        statistics_raw = {"frameId": tframeIds, "TP": ttp, "FP": tfp, "TN": ttn, "FN": tfn, "invalids": tinval}
        with open("stats.pkl", "wb") as f:
            pickle.dump(statistics_raw, f)
        logging.info("Saved the statistics for further analysis.")


def downsample_and_predict(data, net, pts, factor, prediction_mode, vis=False, feat_vis=False):
    pts = pts.reshape(256*factor, 256*factor, 32*factor, 3)

    if vis:
        sigmas = torch.zeros(256*factor, 256*factor, 32*factor).numpy()
        segs = torch.zeros(256*factor, 256*factor, 32*factor).numpy()
        if feat_vis:
            dino = torch.zeros(256*factor, 256*factor, 32*factor, 768).numpy()
        else:
            dino = None
    else:
        sigmas = torch.zeros(256, 256, 32).numpy()
        segs = torch.zeros(256, 256, 32).numpy()
        dino = None

    chunk_size_x = chunk_size_y = 128
    chunk_size_z = 32

    n_chunks_x = int(256*factor / chunk_size_x)
    n_chunks_y = int(256*factor / chunk_size_y)
    n_chunks_z = int(32*factor / chunk_size_z)

    if vis:
        factor = 1

    b_x = chunk_size_x // factor # size of the mini blocks
    b_y = chunk_size_y // factor
    b_z = chunk_size_z // factor

    # Changed for efficiency
    images = torch.stack(data["imgs"], dim=0).unsqueeze(0).to(device).float()
    poses = torch.tensor(np.stack(data["poses"], 0)).unsqueeze(0).to(device).float()
    projs = torch.tensor(np.stack(data["projs"], 0)).unsqueeze(0).to(device).float()

    poses = torch.inverse(poses[:, :1]) @ poses

    extra_args = {"images_alt": images * 0.5 + 0.5}

    net.compute_grid_transforms(projs, poses)

    torch.cuda.synchronize()
    encoding_start_time = time.time()

    net.encode(images, projs, poses, ids_encoder=[0], ids_render=[0], **extra_args)

    torch.cuda.synchronize()
    encoding_time = time.time() - encoding_start_time
    #print(f" - Encoding time: {encoding_time:.6f} seconds")

    net.set_scale(0)

    for i in range(n_chunks_x):
        for j in range(n_chunks_y):
            for k in range(n_chunks_z):
                pts_block = pts[i * chunk_size_x:(i + 1) * chunk_size_x, j * chunk_size_y:(j + 1) * chunk_size_y, k * chunk_size_z:(k + 1) * chunk_size_z]
                
                #with torch.autograd.profiler.profile([torch.profiler.ProfilerActivity.CPU, torch.profiler.ProfilerActivity.CUDA], use_cuda=True) as prof:
                sigmas_block, segs_block, dino_feat_block = predict_grid(data, net, pts_block, prediction_mode)
                #print(prof.key_averages().table(sort_by="cpu_time_total", row_limit=-1))
                #raise ValueError("Profiling done.")

                sigmas_block = sigmas_block.reshape(chunk_size_x, chunk_size_y, chunk_size_z)
                segs_block = segs_block.reshape(chunk_size_x, chunk_size_y, chunk_size_z, 19)
                
                if feat_vis:
                    dino_feat_block = dino_feat_block.reshape(chunk_size_x, chunk_size_y, chunk_size_z, dino_feat_block.size(-1))

                if USE_ALPHA_WEIGHTING:
                    alphas = 1 - torch.exp(- VOXEL_SIZE * sigmas_block)
                    segs_block = (alphas.unsqueeze(-1) * segs_block).unsqueeze(0)
                else:
                    segs_block = (sigmas_block.unsqueeze(-1) * segs_block).unsqueeze(0)

                if vis:
                    sigmas_block = sigmas_block.detach().cpu().numpy()
                    segs_pool = torch.argmax(segs_block, dim=-1).detach().cpu().numpy()
                    if feat_vis:
                        dino_feat_block = dino_feat_block.detach().cpu().numpy()
                else:
                    segs_pool_list = [F.avg_pool3d(segs_block[..., i], kernel_size=factor, stride=factor, padding=0) for i in
                                    range(segs_block.shape[-1])]
                    segs_pool = torch.stack(segs_pool_list, dim=-1).unsqueeze(0)
                    segs_pool = torch.argmax(segs_pool, dim=-1).detach().cpu().numpy()

                    # pool the observations
                    sigmas_block = F.max_pool3d(sigmas_block.unsqueeze(0), kernel_size=factor, stride=factor, padding=0).squeeze(0).detach().cpu().numpy()

                sigmas[i * b_x:(i + 1) * b_x, j * b_y: (j + 1) * b_y, b_z * k:b_z * (k + 1)] = sigmas_block
                segs[i * b_x:(i + 1) * b_x, j * b_y: (j + 1) * b_y, b_z * k:b_z * (k + 1)] = segs_pool

                if feat_vis:
                    dino[i * b_x:(i + 1) * b_x, j * b_y: (j + 1) * b_y, b_z * k:b_z * (k + 1), :] = dino_feat_block

                torch.cuda.empty_cache()

    if USE_GROW:
        sigmas = F.max_pool3d(torch.tensor(sigmas).unsqueeze(0), kernel_size=3, stride=1, padding=1).squeeze(0).numpy()

    return sigmas, segs, dino


def calculate_pca(dino, is_occupied_seg, net):
    dino = torch.Tensor(dino)
    visible_dino = dino[is_occupied_seg]

    # print(net.encoder.visualization.batch_rgb_mean, net.encoder.visualization.batch_rgb_comp)
    net.encoder.fit_visualization(visible_dino.flatten(0, -2), refit=True)
    return torch.clamp(net.encoder.transform_visualization(dino), min=-0.5, max=0.5).cpu().numpy() + 0.5


def use_custom_maxpool(_sigmas):
    sigmas = torch.zeros(258, 258, 34)
    sigmas[1:257, 1:257, 1:33] = torch.tensor(_sigmas)
    sigmas_pooled = torch.zeros(256, 256, 32)

    for i in range(256):
        for j in range(256):
            for k in range(32):
                sigmas_pooled[i, j, k] = max(sigmas[i+1, j+1, k+1],
                                             sigmas[i, j+1, k+1], sigmas[i+1, j, k+1],sigmas[i+1, j+1, k],
                                             sigmas[i+2, j+1, k+1], sigmas[i+1, j+2, k+1],sigmas[i+1, j+1, k+2])
    return sigmas_pooled

def plot_images(images_dict):
    """The images dict should include six images and six corresponding ids"""
    images = images_dict["images"]
    ids = images_dict["ids"]

    fig, axes = plt.subplots(3, 2, figsize=(10, 6))

    axes = axes.flatten()

    for i, img in enumerate(images):
        axes[i].imshow(images[i])
        axes[i].axis("off")
        axes[i].set_title(f"FrameId: {ids[i]}")

    plt.subplots_adjust(wspace=0.01, hspace=0.01)
    plt.show()

def plot_image_at_frame_id(dataset, frame_id):

    for i in range(len(dataset)):
        sequence, id, is_right = dataset._datapoints[i]
        if id == frame_id:
            data = dataset[i]
            plt.figure(figsize=(10, 4))
            plt.imshow(((data["imgs"][0] + 1) / 2).permute(1, 2, 0))
            plt.gca().set_axis_off()
            plt.show()
            return



def identify_additional_invalids(target):
    # Note: The Numpy implementation is a bit faster (about 0.1 seconds per iteration)

    _t = np.concatenate([np.zeros([256, 256, 1]), target], axis=2)
    invalids = np.cumsum(np.logical_and(_t != 255, _t != 0), axis=2)[:, :, :32] == 0
    # _t = torch.cat([torch.zeros([256, 256, 1], device=device, dtype=torch.int32), torch.tensor(target, dtype=torch.int32).to(device)], dim=2)
    # invalids = torch.cumsum((_t != 255) & (_t != 0), axis=2)[:,:, :32] == 0
    # height cut-off (z > 6 ==> no invalid)
    invalids[: , :, 7:] = 0
    # only empty voxels matter
    invalids[target != 0] = 0

    # return invalids.cpu().numpy()
    return invalids

def predict_grid(data_batch, net, points, prediction_mode):
    # Removed for efficiency
    # images = torch.stack(data_batch["imgs"], dim=0).unsqueeze(0).to(device).float()
    # poses = torch.tensor(np.stack(data_batch["poses"], 0)).unsqueeze(0).to(device).float()
    # projs = torch.tensor(np.stack(data_batch["projs"], 0)).unsqueeze(0).to(device).float()

    # poses = torch.inverse(poses[:, :1]) @ poses

    # extra_args = {"images_alt": images * 0.5 + 0.5}

    # net.compute_grid_transforms(projs, poses)
    # net.encode(images, projs, poses, ids_encoder=[0], ids_render=[0], **extra_args)

    # net.set_scale(0)

    # q_pts = get_pts(X_RANGE, Y_RANGE, Z_RANGE, p_res[1], p_res_y, p_res[0])
    # q_pts = q_pts.to(device).reshape(1, -1, 3)
    # # _, invalid, sigmas = net.forward(q_pts)
    #
    points = points.reshape(1, -1, 3)
    if prediction_mode is not None:
        dino_feat, invalid, sigmas, segs = net.forward(points, predict_segmentation=True, prediction_mode=prediction_mode)
    else:
        dino_feat, invalid, sigmas, segs = net.forward(points, predict_segmentation=True)

    return sigmas, segs, dino_feat


def convert_voxels(arr, map_dict):
    f = np.vectorize(map_dict.__getitem__)
    return f(arr)


def compute_occupancy_numbers_segmentation(y_pred, y_true, fov_mask, labels):
    label_ids = list(labels.keys())[1:]
    mask = y_true != 255
    mask = np.logical_and(mask, fov_mask)
    mask = mask.flatten()

    y_pred = y_pred.flatten()[mask]
    y_true = y_true.flatten()[mask]

    tp = np.zeros(len(label_ids))
    fp = np.zeros(len(label_ids))
    fn = np.zeros(len(label_ids))
    tn = np.zeros(len(label_ids))

    for label_id in label_ids:
        tp[label_id - 1] = np.sum(np.logical_and(y_true == label_id, y_pred == label_id))
        fp[label_id - 1] = np.sum(np.logical_and(y_true != label_id, y_pred == label_id))
        fn[label_id - 1] = np.sum(np.logical_and(y_true == label_id, y_pred != label_id))
        tn[label_id - 1] = np.sum(np.logical_and(y_true != label_id, y_pred != label_id))

    dim_conf = len(label_ids) + 1
    bincount_values = dim_conf * y_true + y_pred
    confusion_matrix = np.bincount(bincount_values, minlength=dim_conf*dim_conf).reshape(dim_conf, dim_conf)

    return tp, fp, tn, fn, confusion_matrix


def compute_occupancy_recall_segmentation(y_pred, y_true, fov_mask, labels):
    label_ids = list(labels.keys())[1:]
    mask = y_true != 255
    mask = np.logical_and(mask, fov_mask)
    mask = mask.flatten()

    y_pred = y_pred.flatten()[mask]
    y_true = y_true.flatten()[mask]

    tp = np.zeros(len(label_ids))
    sum = np.zeros(len(label_ids))

    for label_id in label_ids:
        tp[label_id - 1] = np.sum(np.logical_and(y_true == label_id, y_pred > 0))
        sum[label_id - 1] = np.sum(y_true == label_id)

    return tp, sum


def compute_occupancy_numbers(y_pred, y_true, fov_mask):
    mask = y_true != 255
    mask = np.logical_and(mask, fov_mask)
    mask = mask.flatten()

    y_pred = y_pred.flatten()
    y_true = y_true.flatten()

    occ_true = y_true[mask] > 0
    occ_pred = y_pred[mask] > 0

    tp = np.sum(np.logical_and(occ_true == 1, occ_pred == 1))
    fp = np.sum(np.logical_and(occ_true == 0, occ_pred == 1))
    fn = np.sum(np.logical_and(occ_true == 1, occ_pred == 0))
    tn = np.sum(np.logical_and(occ_true == 0, occ_pred == 0))

    return tp, fp, tn, fn

if __name__ == "__main__":

    #with torch.cuda.amp.autocast(dtype=torch.float16):
    with torch.no_grad():
            main()