Spaces:
Running
on
Zero
Running
on
Zero
File size: 36,969 Bytes
9e15541 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 |
import argparse
import sys
import random
import time
from omegaconf import open_dict
import matplotlib.pyplot as plt
sys.path.extend([".", ".."])
from generate_ply_sequence import get_cam_k
from point_utils import read_calib, generate_point_grid, get_fov_mask
from gen_voxelgrid_npy import save_as_voxel_ply, remove_invisible
import logging
from pathlib import Path
import subprocess
import yaml
import cv2
import os
import numpy as np
from tqdm import tqdm
import pickle
import torch
from torch import nn
import torch.nn.functional as F
from hydra import compose, initialize
import matplotlib.pyplot as plt
from sscbench_dataset import SSCBenchDataset
from pathlib import Path
from scipy.optimize import linear_sum_assignment
import torchvision
RELOAD_DATASET = True
DATASET_LENGTH = 10
FULL_EVAL = True
SAMPLE_EVERY = None
SAMPLE_OFFSET = 2
SAMPLE_RANGE = None
SIZE = 51.2 # Can be: 51.2, 25.6, 12.8
SIZES = (12.8, 25.6, 51.2)
VOXEL_SIZE = 0.2 # Needs: 0.2 % VOXEL_SIZE == 0
USE_ADDITIONAL_INVALIDS = True
TEST_ALPHA_CUTOFFS = False
SEARCH_VALUES = [10e-1, 10e-2, 10e-3, 10e-4, 10e-5, 10e-6, 10e-7]
SIGMA_CUTOFF = 0.2
USE_ALPHA_WEIGHTING = True
USE_GROW = True
CREATE_SIGMA_TRADEOFF_PLOT = True
SIGMA_VALUES = [1, 0.5, 0.25, 0.1, 0.05, 0.025, 0.01, 0.005, 0.0025, 0.001]
PLOT_ALL_IMAGES = False
GENERATE_PLY_FILES = False
PLY_ONLY_FOV = True
PLY_IDS = [300, 400, 470]
OUTPUT_PATH = Path("<PATH-OUTPUT>")
PLY_SIZES = [25.6, 51.2]
GENERATE_STATISTICS = False
# For ply generation:
# USE_ADDITIONAL_INVALIDS = False
# USE_GROW = False
# GENERATE_PLY_FILES = True
os.system("nvidia-smi")
device = f'cuda:0'
# DO NOT TOUCH OR YOU WILL BREAK RUNS (should be None)
gpu_id = None
if gpu_id is not None:
print("GPU ID: " + str(gpu_id))
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = str(gpu_id)
if torch.cuda.is_available():
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = True
torch.backends.cudnn.deterministic = True
logging.basicConfig(level=logging.INFO)
def main():
parser = argparse.ArgumentParser("SSCBenchmark Output generation")
parser.add_argument("--sscbench_data_root", "-ssc", type=str)
parser.add_argument("--voxel_gt_path", "-vgt", type=str)
parser.add_argument("--resolution", "-r", default=(192, 640))
parser.add_argument("--checkpoint", "-cp", type=str, required=True)
parser.add_argument("--full", "-f", action="store_true")
parser.add_argument("--mode", "-m", default="s4c")
parser.add_argument("--ply_checkname", "-p", default="none")
args = parser.parse_args()
sscbench_data_root = args.sscbench_data_root
voxel_gt_path = args.voxel_gt_path
resolution = args.resolution
cp_path = args.checkpoint
full_evaluation = args.full
mode = args.mode
ply_checkname = args.ply_checkname
if FULL_EVAL:
full_evaluation = True
if GENERATE_PLY_FILES:
assert (not USE_GROW) and (not USE_ADDITIONAL_INVALIDS) # and VOXEL_SIZE == 0.1
# make the necessary dirs
for size in PLY_SIZES:
if not os.path.exists(OUTPUT_PATH / ply_checkname / str(int(size))):
os.makedirs(OUTPUT_PATH / ply_checkname / str(int(size)))
if not os.path.exists(OUTPUT_PATH / ply_checkname):
os.makedirs(OUTPUT_PATH / ply_checkname)
logging.info(f"Using a sigma cutoff of {SIGMA_CUTOFF}")
logging.info("Setting up dataset")
with open("label_maps.yaml", "r") as f:
label_maps = yaml.safe_load(f)
# pickle the dataset so we don't have to wait all the time
if os.path.isfile("dataset.pkl") and not RELOAD_DATASET:
logging.info("Loading dataset from dataset.pkl file.")
with open("dataset.pkl", "rb") as f:
dataset = pickle.load(f)
else:
logging.info("Generating the dataset and dumping it to dataset.pkl")
dataset = SSCBenchDataset(
data_path=sscbench_data_root,
voxel_gt_path=voxel_gt_path,
sequences=(9,),
target_image_size=resolution,
return_stereo=False,
frame_count=1,
color_aug=False,
load_fisheye=True,
fisheye_offset=10,
)
if DATASET_LENGTH and not full_evaluation:
dataset.length = DATASET_LENGTH
with open("dataset.pkl", 'wb') as f:
pickle.dump(dataset, f)
logging.info("Setting up the model...")
config_path = "exp_kitti_360"
cp_path = Path(cp_path)
if cp_path.suffix == ".pt":
cp_root_path = cp_path.parent
else:
cp_root_path = cp_path
cp_path = next(cp_root_path.glob("training*.pt"))
bts_dino_config_path = "training_config.yaml"
PRODUCE_FEAT_VIS = GENERATE_PLY_FILES and mode.startswith("scenedino")
prediction_mode = None
if mode == "s4c":
from models.bts.model import BTSNet
from models.common.render import NeRFRenderer
initialize(version_base=None, config_path="../../../configs", job_name="gen_sscbench_outputs")
config = compose(config_name=config_path, overrides=[])
logging.info('Loading checkpoint')
cp = torch.load(cp_path, map_location=device)
with open_dict(config):
config["renderer"]["hard_alpha_cap"] = True
config["model_conf"]["code_mode"] = "z"
# config["model_conf"]["z_near"] = 8
config["model_conf"]["mlp_coarse"]["n_blocks"] = 0
config["model_conf"]["mlp_coarse"]["d_hidden"] = 64
config["model_conf"]["encoder"]["d_out"] = 64
config["model_conf"]["encoder"]["type"] = "monodepth2"
config["model_conf"]["grid_learn_empty"] = False
config["model_conf"]["sample_color"] = True
# stuff for segmentation
config["model_conf"]["segmentation_mode"] = "panoptic_deeplab"
net = BTSNet(config["model_conf"])
net.sample_color = False
renderer = NeRFRenderer.from_conf(config["renderer"])
renderer = renderer.bind_parallel(net, gpus=None).eval()
renderer.renderer.n_coarse = 64
renderer.renderer.lindisp = True
class _Wrapper(nn.Module):
def __init__(self):
super().__init__()
self.renderer = renderer
_wrapper = _Wrapper()
_wrapper.load_state_dict(cp["model"], strict=False)
renderer.to(device)
renderer.eval()
elif mode.startswith("scenedino"):
from scenedino.models import make_model as dino_bts_make_model
from scenedino.renderer.nerf import NeRFRenderer as dino_bts_NeRFRenderer
from scenedino.common.ray_sampler import ImageRaySampler as dino_bts_ImageRaySampler
bts_dino_parent_relative = Path("../../../../")
bts_dino_parent_absolute = str(bts_dino_parent_relative.resolve())
initialize(version_base=None,
config_path=str(bts_dino_parent_relative / cp_root_path.relative_to(bts_dino_parent_absolute)),
job_name="gen_sscbench_outputs")
config = compose(config_name=bts_dino_config_path, overrides=[])
logging.info('Loading checkpoint')
cp = torch.load(cp_path, map_location=device)
net = dino_bts_make_model(config["model"], config["downstream"])
renderer = dino_bts_NeRFRenderer.from_conf(config["renderer"])
renderer.hard_alpha_cap = False
renderer = renderer.bind_parallel(net, gpus=None).eval()
class _Wrapper(nn.Module):
def __init__(self):
super().__init__()
self.renderer = renderer
_wrapper = _Wrapper()
_wrapper.load_state_dict(cp, strict=False) # _wrapper.load_state_dict(cp["model"], strict=False)
renderer.to(device)
renderer.eval()
height, width = config["dataset"]["image_size"]
ray_sampler = dino_bts_ImageRaySampler(z_near=3, z_far=80, width=width, height=height)
if mode == "scenedino_linear":
prediction_mode = "direct_linear"
elif mode == "scenedino_direct_cluster":
prediction_mode = "direct_kmeans"
else:
prediction_mode = "stego_kmeans"
else:
raise NotImplementedError()
logging.info("Loading the Lidar to Camera matrices...")
calib = read_calib()
T_velo_2_cam = calib["Tr"]
logging.info("Generating the point cloud...")
pts, _ = generate_point_grid(vox_origin=np.array([0, -25.6, -2]),
scene_size=(51.2, 51.2, 6.4),
voxel_size=VOXEL_SIZE,
cam_E=T_velo_2_cam,
cam_k=get_cam_k())
fov_mask = get_fov_mask()
pts = torch.tensor(pts).to(device).reshape(1, -1, 3).float()
fov_mask = fov_mask.reshape(256, 256, 32)
logging.info("Setting up folders...")
downsample_factor = int(0.2 // VOXEL_SIZE)
results = {}
for size in SIZES:
results[size] = {
"tp": 0,
"fp": 0,
"tn": 0,
"fn": 0,
"tp_seg": np.zeros(15),
"fp_seg": np.zeros(15),
"tn_seg": np.zeros(15),
"fn_seg": np.zeros(15),
"confusion_seg": np.zeros((16, 16)),
"tp_recall_seg": np.zeros(15),
"sum_recall_seg": np.zeros(15),
}
# for the sigma tradeoff plots
trade_off_values = np.zeros([len(SIGMA_VALUES), 4])
cutoff_results = {i: {sv: {"tp":0, "fp": 0, "tn": 0, "fn": 0} for sv in SEARCH_VALUES} for i in range(1, 16)}
pbar = tqdm(range(len(dataset)))
# Randomly select indices without replacement
# dataset_size = len(dataset)
# subset_size = dataset_size // 10
# subset_indices = random.sample(range(dataset_size), subset_size)
# pbar = tqdm(subset_indices)
images = {"ids": [], "images": []}
ids = [125, 280, 960, 1000, 1150, 1325, 2300, 3175, 3750, 4300, 5155, 5475, 5750, 6475, 6525, 6670, 6775, 7500, 7860, 8000, 8350, 9000, 9350, 10975]
ids = [60, 250, 455, 690, 835, 2235, 2385, 2495, 3385, 4235, 4360, 4550, 4875, 5550, 6035, 7010, 7110, 8575, 9010, 9410, 11260, 11460, 11885]
# for our statistics
tframeIds = []
tinval = []
ttp = []
tfp = []
ttn = []
tfn = []
# plot_image_at_frame_id(dataset, 952)
for i in pbar:
if SAMPLE_EVERY:
if (i - SAMPLE_OFFSET) % SAMPLE_EVERY != 0:
continue
sequence, id, is_right = dataset._datapoints[i]
if SAMPLE_RANGE:
if id not in SAMPLE_RANGE:
continue
if GENERATE_PLY_FILES and id not in PLY_IDS:
continue
if GENERATE_STATISTICS:
tframeIds.append(id)
data = dataset[i]
torch.cuda.empty_cache()
torch.cuda.reset_peak_memory_stats()
torch.cuda.synchronize()
start_time = time.time()
# downsample the sigmas
sigmas, segs, dino = downsample_and_predict(data, net, pts, downsample_factor, prediction_mode, vis=GENERATE_PLY_FILES, feat_vis=PRODUCE_FEAT_VIS)
torch.cuda.synchronize()
inference_time = time.time() - start_time
memory_used = torch.cuda.max_memory_allocated(device) / 1024**2 # in MB
num_params = sum(p.numel() for key, p in net.named_parameters() if not key.startswith("encoder.gt_encoder"))
#print(f"Inference time: {inference_time:.6f} seconds")
#print(f"Memory used: {memory_used:.2f} MB")
#print(f"Number of parameters: {num_params:,}")
# convert both to the right format
segs = convert_voxels(segs, label_maps["cityscapes_to_label"])
target = convert_voxels(data["voxel_gt"][0].astype(int), label_maps["sscbench_to_label"])
is_occupied_seg = torch.Tensor(sigmas > SIGMA_CUTOFF).to(torch.bool)
is_occupied_seg = remove_invisible(is_occupied_seg)
#raise ValueError(is_occupied_seg, segs)
is_occupied_seg[segs==0] = False
images = torch.stack([torch.Tensor(_img) for _img in data["imgs"]], dim=0).cuda()
if PRODUCE_FEAT_VIS:
dino = calculate_pca(dino, is_occupied_seg, net)
dino = (255*dino).astype(int)
poses = torch.stack([torch.Tensor(_pose) for _pose in data["poses"]], dim=0).unsqueeze(0).cuda()
projs = torch.stack([torch.Tensor(_proj) for _proj in data["projs"]], dim=0).unsqueeze(0).cuda()
poses = torch.inverse(poses[:, :1]) @ poses
all_rays, _ = ray_sampler.sample(None, poses, projs)
render_dict = renderer(all_rays[:, :], want_weights=True, want_alphas=True)
render_dict = ray_sampler.reconstruct(render_dict)
dino_features = net.encoder.expand_dim(render_dict["coarse"]["dino_features"]).squeeze()
dino_gt = net.encoder.gt_encoder(images / 2 + 0.5)[-1].permute(0, 2, 3, 1)
dino_gt = F.normalize(dino_gt, dim=-1)
dino_rgb_vis = torch.clamp(net.encoder.transform_visualization(dino_features.cpu()), min=-0.5, max=0.5) + 0.5
dino_rgb_vis_gt = torch.clamp(net.encoder.transform_visualization(dino_gt.cpu()), min=-0.5, max=0.5) + 0.5
dino_rgb_vis_gt = dino_rgb_vis_gt.repeat_interleave(8, 1).repeat_interleave(8, 2)
if PLOT_ALL_IMAGES:
images["ids"].append(id)
images["images"].append(((data["imgs"][0] + 1) / 2).permute(1, 2, 0))
if len(images["ids"]) == 6:
plot_images(images)
images = {"images": [], "ids": []}
# print(f"Image_Id: {id}")
#
# plt.imshow(((data["imgs"][0] + 1) / 2).permute(1, 2, 0))
# plt.show()
#
# out_dict = {"sigmas": sigmas, "segs": segs.copy(), "gt": target, "fov_mask": fov_mask}
#
# with open(f'plots10_40/{id:06d}.pkl', 'wb') as f:
# pickle.dump(out_dict, f)
if GENERATE_PLY_FILES:
_segs = segs.copy()
_target = target.copy()
if PRODUCE_FEAT_VIS:
_dino = dino.copy()
mask = target != 255
if PLY_ONLY_FOV:
mask = mask & fov_mask
seg_mask = mask.copy()
for dim in range(seg_mask.ndim):
seg_mask = np.repeat(seg_mask, downsample_factor, axis=dim)
# _segs[~seg_mask] = 0
# _dino[~seg_mask] = 0
_target[~mask] = 0
is_occupied_seg = is_occupied_seg.logical_and(torch.Tensor(fov_mask))
# is_occupied_seg = torch.tensor(_segs > 0)
is_occupied_gt = torch.tensor(_target > 0)
full_num_voxels = int(SIZE // VOXEL_SIZE)
for idx in range(images.size(0)):
torchvision.utils.save_image(((images[idx] + 1) / 2), OUTPUT_PATH / ply_checkname / str(int(size)) / f"{id:06d}_image_{idx}.png")
if PRODUCE_FEAT_VIS:
torchvision.utils.save_image(dino_rgb_vis[idx].permute(2, 0, 1), OUTPUT_PATH / ply_checkname / str(int(size)) / f"{id:06d}_features_{idx}.png")
torchvision.utils.save_image(dino_rgb_vis_gt[idx].permute(2, 0, 1), OUTPUT_PATH / ply_checkname / str(int(size)) / f"{id:06d}_features_gt_{idx}.png")
images = None
for size in PLY_SIZES:
num_voxels = int(size // 0.2)
save_as_voxel_ply(OUTPUT_PATH / ply_checkname / str(int(size)) / f"{id:06d}_gt.ply",
is_occupied_gt[: num_voxels, (128 - num_voxels // 2): (128 + num_voxels // 2),:],
voxel_size=0.2,
classes=torch.tensor(_target[: num_voxels, (128 - num_voxels // 2): (128 + num_voxels // 2),:]))
num_voxels = int(size // VOXEL_SIZE)
save_as_voxel_ply(OUTPUT_PATH / ply_checkname / str(int(size)) / f"{id:06d}.ply",
is_occupied_seg[: num_voxels, (full_num_voxels // 2 - num_voxels // 2): (full_num_voxels // 2 + num_voxels // 2),:],
size=(num_voxels, num_voxels, num_voxels//8),
voxel_size=VOXEL_SIZE,
classes=torch.tensor(_segs[: num_voxels, (full_num_voxels // 2 - num_voxels // 2): (full_num_voxels // 2 + num_voxels // 2),:]))
if PRODUCE_FEAT_VIS:
save_as_voxel_ply(OUTPUT_PATH / ply_checkname / str(int(size)) / f"{id:06d}_feat.ply",
is_occupied_seg[: num_voxels, (full_num_voxels // 2 - num_voxels // 2): (full_num_voxels // 2 + num_voxels // 2),:],
size=(num_voxels, num_voxels, num_voxels//8),
voxel_size=VOXEL_SIZE,
colors=torch.tensor(_dino[: num_voxels, (full_num_voxels // 2 - num_voxels // 2): (full_num_voxels // 2 + num_voxels // 2),:]))
continue
if USE_ADDITIONAL_INVALIDS:
invalids = identify_additional_invalids(target)
# logging.info(np.mean(invalids))
target[invalids == 1] = 255
if GENERATE_STATISTICS:
tinval.append(np.mean(invalids))
# test and summarize different alpha cutoffs
if TEST_ALPHA_CUTOFFS:
for i in range(1, 16):
for search_value in SEARCH_VALUES:
_tmp = segs.copy()
_tmp[np.logical_and(segs == i, sigmas < search_value)] = 0
_tp_seg, _fp_seg, _tn_seg, _fn_seg = compute_occupancy_numbers_segmentation(
y_pred=_tmp, y_true=target, fov_mask=fov_mask, labels=label_maps["labels"])
cutoff_results[i][search_value]["tp"] += _tp_seg[i-1]
cutoff_results[i][search_value]["fp"] += _fp_seg[i-1]
cutoff_results[i][search_value]["tn"] += _tn_seg[i-1]
cutoff_results[i][search_value]["fn"] += _fn_seg[i-1]
if CREATE_SIGMA_TRADEOFF_PLOT:
for i, val in enumerate(SIGMA_VALUES):
_tmp = segs.copy()
_tmp[sigmas < val] = 0
_tp, _fp, _tn, _fn = compute_occupancy_numbers(y_pred=_tmp, y_true=target, fov_mask=fov_mask)
trade_off_values[i] += np.array([_tp, _fp, _tn, _fn])
segs[sigmas < SIGMA_CUTOFF] = 0
for size in SIZES:
num_voxels = int(size // 0.2)
# resize to right scene size
_segs = segs[:num_voxels, (128 - num_voxels//2):(128 + num_voxels//2), :]
_target = target[:num_voxels, (128 - num_voxels//2):(128 + num_voxels//2), :]
_fov_mask = fov_mask[:num_voxels, (128 - num_voxels // 2):(128 + num_voxels // 2), :]
_tp, _fp, _tn, _fn = compute_occupancy_numbers(y_pred=_segs, y_true=_target, fov_mask=_fov_mask)
_tp_seg, _fp_seg, _tn_seg, _fn_seg, _confusion_seg = compute_occupancy_numbers_segmentation(
y_pred=_segs, y_true=_target, fov_mask=_fov_mask, labels=label_maps["labels"])
_tp_rec_seg, _sum_rec_seg = compute_occupancy_recall_segmentation(
y_pred=_segs, y_true=_target, fov_mask=_fov_mask, labels=label_maps["labels"])
if size == 51.2 and GENERATE_STATISTICS:
ttp += [_tp]
tfp += [_fp]
ttn += [_fn]
tfn += [_fn]
results[size]["tp"] += _tp
results[size]["fp"] += _fp
results[size]["tn"] += _tn
results[size]["fn"] += _fn
results[size]["tp_seg"] += _tp_seg
results[size]["fp_seg"] += _fp_seg
results[size]["tn_seg"] += _tn_seg
results[size]["fn_seg"] += _fn_seg
results[size]["confusion_seg"] += _confusion_seg
results[size]["tp_recall_seg"] += _tp_rec_seg
results[size]["sum_recall_seg"] += _sum_rec_seg
recall = results[size]["tp"] / (results[size]["tp"] + results[size]["fn"])
precision = results[size]["tp"] / (results[size]["tp"] + results[size]["fp"])
iou = results[size]["tp"] / (results[size]["tp"] + results[size]["fp"] + results[size]["fn"])
pbar.set_postfix_str(f"IoU: {iou*100:.2f} Prec: {precision*100:.2f} Rec: {recall*100:.2f}")
result_str = ""
for mode in ["direct", "hungarian"]:
results_table = np.zeros((19, 3), dtype=np.float32)
if mode == "hungarian":
assignments = linear_sum_assignment(results[51.2]["confusion_seg"], maximize=True) # Hungarian matching on full range
# Here we compute all the metrics
for size_i, size in enumerate(SIZES):
recall = results[size]["tp"] / (results[size]["tp"] + results[size]["fn"])
precision = results[size]["tp"] / (results[size]["tp"] + results[size]["fp"])
iou = results[size]["tp"] / (results[size]["tp"] + results[size]["fp"] + results[size]["fn"])
results_table[0, size_i] = iou
results_table[1, size_i] = precision
results_table[2, size_i] = recall
# logging.info(f"#" * 50)
# logging.info(f"Results for size {size}. ")
# logging.info(f"#" * 50)
# logging.info("Occupancy metrics")
# logging.info(f"Recall: {recall*100:.2f}%")
# logging.info(f"Precision: {precision*100:.2f}%")
# logging.info(f"IoU: {iou*100:.2f}")
# recall_seg = results[size]["tp_seg"] / (results[size]["tp_seg"] + results[size]["fn_seg"])
# precision_seg = results[size]["tp_seg"] / (results[size]["tp_seg"] + results[size]["fp_seg"])
# iou_seg = results[size]["tp_seg"] / (results[size]["tp_seg"] + results[size]["fp_seg"] + results[size]["fn_seg"])
# mean_iou = np.mean(np.nan_to_num(iou_seg))
# Calculate hungarian matching
confusion_matrix = results[size]["confusion_seg"]
if mode == "hungarian":
confusion_matrix = confusion_matrix[np.argsort(assignments[1]), :]
confusion_matrix_tp = np.diag(confusion_matrix)
confusion_matrix_denom = confusion_matrix.sum(0) + confusion_matrix.sum(1) - confusion_matrix_tp
confusion_matrix_per_class_iou = confusion_matrix_tp[1:] / confusion_matrix_denom[1:]
confusion_matrix_miou = np.mean(np.nan_to_num(confusion_matrix_per_class_iou))
# occupancy_recall_seg = results[size]["tp_recall_seg"] / results[size]["sum_recall_seg"]
weights = label_maps["weights"]
weights_val = np.array(list(weights.values()))
weighted_mean_iou = np.sum(weights_val * np.nan_to_num(confusion_matrix_per_class_iou)) / np.sum(weights_val)
results_table[3, size_i] = confusion_matrix_miou
results_table[4:, size_i] = confusion_matrix_per_class_iou
row_labels = [
"IoU", "Precision", "Recall",
"mIoU", "car", "bicycle", "motorcycle", "truck", "other-vehicle", "person",
"road", "sidewalk", "building", "fence", "vegetation", "terrain", "pole",
"traffic-sign", "other-object"
]
column_headers = ["12.8m", "25.6m", "51.2m"]
result_str += f"\n# Benchmark Results for '{ply_checkname}' / Mode: {mode}\n"
result_str += "\n| | " + " | ".join(column_headers) + " |\n"
result_str += "|---------------|-------|-------|-------|\n"
for i in range(len(row_labels)):
row_values = results_table[i]
row_str = f"| {row_labels[i]:<13} | " + " | ".join(f"{v * 100:5.2f}" for v in row_values) + " |\n"
result_str += row_str
if i == 2:
result_str += "|---------------|-------|-------|-------|\n"
result_str += "\n"
if mode == "hungarian":
result_str += f"Reassignment: {np.argsort(assignments[1])}\n"
result_str += f"Mean IoU: {confusion_matrix_miou * 100:.2f}\n"
result_str += f"Weighted Mean IoU: {weighted_mean_iou * 100:.2f}\n\n"
print(result_str)
if not GENERATE_PLY_FILES:
with open(OUTPUT_PATH / ply_checkname / "results.md", "w") as file:
file.write(result_str)
if TEST_ALPHA_CUTOFFS:
cutoff_metrics = \
{i: {sv: {"precision": np.nan_to_num(100*cutoff_results[i][sv]["tp"] / (cutoff_results[i][sv]["tp"] + cutoff_results[i][sv]["fp"])),
"recall": np.nan_to_num(100*cutoff_results[i][sv]["tp"] / (cutoff_results[i][sv]["tp"] + cutoff_results[i][sv]["fn"])),
"IoU": np.nan_to_num(100*cutoff_results[i][sv]["tp"] / (cutoff_results[i][sv]["tp"] + cutoff_results[i][sv]["fn"] + cutoff_results[i][sv]["fp"]))}
for sv in SEARCH_VALUES} for i in range(1, 16)}
best_values = {i: SEARCH_VALUES[torch.argmax(torch.tensor([cutoff_metrics[i][sv]["IoU"] for sv in SEARCH_VALUES]))] for i in range(1, 16)}
print(best_values)
if CREATE_SIGMA_TRADEOFF_PLOT:
plt.figure(figsize=(10, 8))
plt.xlabel("Precision")
plt.ylabel("Recall")
plt.xlim([10, 70])
# plt.ylim([0, 100])
for i, val in enumerate(SIGMA_VALUES):
tp, fp, tn, fn = trade_off_values[i]
pres = 100*tp / (tp + fp)
recall = 100*tp/ (tp + fn)
plt.scatter(pres, recall)
plt.annotate(f"Sigma: {val}; IoU: {100*tp / (tp + fp + fn):.2f}", (pres, recall))
identifier = os.path.basename(cp_path)
if FULL_EVAL:
path = f"figures/inv{str(USE_ADDITIONAL_INVALIDS)}_{VOXEL_SIZE:.1f}_mp{str(USE_GROW)}_{identifier}.png"
else:
path = f"figures/inv{str(USE_ADDITIONAL_INVALIDS)}_{DATASET_LENGTH}_{VOXEL_SIZE:.1f}_mp{str(USE_GROW)}_{identifier}.png"
if os.path.isfile(path):
os.remove(path)
plt.savefig(path)
plt.show()
if GENERATE_STATISTICS:
statistics_raw = {"frameId": tframeIds, "TP": ttp, "FP": tfp, "TN": ttn, "FN": tfn, "invalids": tinval}
with open("stats.pkl", "wb") as f:
pickle.dump(statistics_raw, f)
logging.info("Saved the statistics for further analysis.")
def downsample_and_predict(data, net, pts, factor, prediction_mode, vis=False, feat_vis=False):
pts = pts.reshape(256*factor, 256*factor, 32*factor, 3)
if vis:
sigmas = torch.zeros(256*factor, 256*factor, 32*factor).numpy()
segs = torch.zeros(256*factor, 256*factor, 32*factor).numpy()
if feat_vis:
dino = torch.zeros(256*factor, 256*factor, 32*factor, 768).numpy()
else:
dino = None
else:
sigmas = torch.zeros(256, 256, 32).numpy()
segs = torch.zeros(256, 256, 32).numpy()
dino = None
chunk_size_x = chunk_size_y = 128
chunk_size_z = 32
n_chunks_x = int(256*factor / chunk_size_x)
n_chunks_y = int(256*factor / chunk_size_y)
n_chunks_z = int(32*factor / chunk_size_z)
if vis:
factor = 1
b_x = chunk_size_x // factor # size of the mini blocks
b_y = chunk_size_y // factor
b_z = chunk_size_z // factor
# Changed for efficiency
images = torch.stack(data["imgs"], dim=0).unsqueeze(0).to(device).float()
poses = torch.tensor(np.stack(data["poses"], 0)).unsqueeze(0).to(device).float()
projs = torch.tensor(np.stack(data["projs"], 0)).unsqueeze(0).to(device).float()
poses = torch.inverse(poses[:, :1]) @ poses
extra_args = {"images_alt": images * 0.5 + 0.5}
net.compute_grid_transforms(projs, poses)
torch.cuda.synchronize()
encoding_start_time = time.time()
net.encode(images, projs, poses, ids_encoder=[0], ids_render=[0], **extra_args)
torch.cuda.synchronize()
encoding_time = time.time() - encoding_start_time
#print(f" - Encoding time: {encoding_time:.6f} seconds")
net.set_scale(0)
for i in range(n_chunks_x):
for j in range(n_chunks_y):
for k in range(n_chunks_z):
pts_block = pts[i * chunk_size_x:(i + 1) * chunk_size_x, j * chunk_size_y:(j + 1) * chunk_size_y, k * chunk_size_z:(k + 1) * chunk_size_z]
#with torch.autograd.profiler.profile([torch.profiler.ProfilerActivity.CPU, torch.profiler.ProfilerActivity.CUDA], use_cuda=True) as prof:
sigmas_block, segs_block, dino_feat_block = predict_grid(data, net, pts_block, prediction_mode)
#print(prof.key_averages().table(sort_by="cpu_time_total", row_limit=-1))
#raise ValueError("Profiling done.")
sigmas_block = sigmas_block.reshape(chunk_size_x, chunk_size_y, chunk_size_z)
segs_block = segs_block.reshape(chunk_size_x, chunk_size_y, chunk_size_z, 19)
if feat_vis:
dino_feat_block = dino_feat_block.reshape(chunk_size_x, chunk_size_y, chunk_size_z, dino_feat_block.size(-1))
if USE_ALPHA_WEIGHTING:
alphas = 1 - torch.exp(- VOXEL_SIZE * sigmas_block)
segs_block = (alphas.unsqueeze(-1) * segs_block).unsqueeze(0)
else:
segs_block = (sigmas_block.unsqueeze(-1) * segs_block).unsqueeze(0)
if vis:
sigmas_block = sigmas_block.detach().cpu().numpy()
segs_pool = torch.argmax(segs_block, dim=-1).detach().cpu().numpy()
if feat_vis:
dino_feat_block = dino_feat_block.detach().cpu().numpy()
else:
segs_pool_list = [F.avg_pool3d(segs_block[..., i], kernel_size=factor, stride=factor, padding=0) for i in
range(segs_block.shape[-1])]
segs_pool = torch.stack(segs_pool_list, dim=-1).unsqueeze(0)
segs_pool = torch.argmax(segs_pool, dim=-1).detach().cpu().numpy()
# pool the observations
sigmas_block = F.max_pool3d(sigmas_block.unsqueeze(0), kernel_size=factor, stride=factor, padding=0).squeeze(0).detach().cpu().numpy()
sigmas[i * b_x:(i + 1) * b_x, j * b_y: (j + 1) * b_y, b_z * k:b_z * (k + 1)] = sigmas_block
segs[i * b_x:(i + 1) * b_x, j * b_y: (j + 1) * b_y, b_z * k:b_z * (k + 1)] = segs_pool
if feat_vis:
dino[i * b_x:(i + 1) * b_x, j * b_y: (j + 1) * b_y, b_z * k:b_z * (k + 1), :] = dino_feat_block
torch.cuda.empty_cache()
if USE_GROW:
sigmas = F.max_pool3d(torch.tensor(sigmas).unsqueeze(0), kernel_size=3, stride=1, padding=1).squeeze(0).numpy()
return sigmas, segs, dino
def calculate_pca(dino, is_occupied_seg, net):
dino = torch.Tensor(dino)
visible_dino = dino[is_occupied_seg]
# print(net.encoder.visualization.batch_rgb_mean, net.encoder.visualization.batch_rgb_comp)
net.encoder.fit_visualization(visible_dino.flatten(0, -2), refit=True)
return torch.clamp(net.encoder.transform_visualization(dino), min=-0.5, max=0.5).cpu().numpy() + 0.5
def use_custom_maxpool(_sigmas):
sigmas = torch.zeros(258, 258, 34)
sigmas[1:257, 1:257, 1:33] = torch.tensor(_sigmas)
sigmas_pooled = torch.zeros(256, 256, 32)
for i in range(256):
for j in range(256):
for k in range(32):
sigmas_pooled[i, j, k] = max(sigmas[i+1, j+1, k+1],
sigmas[i, j+1, k+1], sigmas[i+1, j, k+1],sigmas[i+1, j+1, k],
sigmas[i+2, j+1, k+1], sigmas[i+1, j+2, k+1],sigmas[i+1, j+1, k+2])
return sigmas_pooled
def plot_images(images_dict):
"""The images dict should include six images and six corresponding ids"""
images = images_dict["images"]
ids = images_dict["ids"]
fig, axes = plt.subplots(3, 2, figsize=(10, 6))
axes = axes.flatten()
for i, img in enumerate(images):
axes[i].imshow(images[i])
axes[i].axis("off")
axes[i].set_title(f"FrameId: {ids[i]}")
plt.subplots_adjust(wspace=0.01, hspace=0.01)
plt.show()
def plot_image_at_frame_id(dataset, frame_id):
for i in range(len(dataset)):
sequence, id, is_right = dataset._datapoints[i]
if id == frame_id:
data = dataset[i]
plt.figure(figsize=(10, 4))
plt.imshow(((data["imgs"][0] + 1) / 2).permute(1, 2, 0))
plt.gca().set_axis_off()
plt.show()
return
def identify_additional_invalids(target):
# Note: The Numpy implementation is a bit faster (about 0.1 seconds per iteration)
_t = np.concatenate([np.zeros([256, 256, 1]), target], axis=2)
invalids = np.cumsum(np.logical_and(_t != 255, _t != 0), axis=2)[:, :, :32] == 0
# _t = torch.cat([torch.zeros([256, 256, 1], device=device, dtype=torch.int32), torch.tensor(target, dtype=torch.int32).to(device)], dim=2)
# invalids = torch.cumsum((_t != 255) & (_t != 0), axis=2)[:,:, :32] == 0
# height cut-off (z > 6 ==> no invalid)
invalids[: , :, 7:] = 0
# only empty voxels matter
invalids[target != 0] = 0
# return invalids.cpu().numpy()
return invalids
def predict_grid(data_batch, net, points, prediction_mode):
# Removed for efficiency
# images = torch.stack(data_batch["imgs"], dim=0).unsqueeze(0).to(device).float()
# poses = torch.tensor(np.stack(data_batch["poses"], 0)).unsqueeze(0).to(device).float()
# projs = torch.tensor(np.stack(data_batch["projs"], 0)).unsqueeze(0).to(device).float()
# poses = torch.inverse(poses[:, :1]) @ poses
# extra_args = {"images_alt": images * 0.5 + 0.5}
# net.compute_grid_transforms(projs, poses)
# net.encode(images, projs, poses, ids_encoder=[0], ids_render=[0], **extra_args)
# net.set_scale(0)
# q_pts = get_pts(X_RANGE, Y_RANGE, Z_RANGE, p_res[1], p_res_y, p_res[0])
# q_pts = q_pts.to(device).reshape(1, -1, 3)
# # _, invalid, sigmas = net.forward(q_pts)
#
points = points.reshape(1, -1, 3)
if prediction_mode is not None:
dino_feat, invalid, sigmas, segs = net.forward(points, predict_segmentation=True, prediction_mode=prediction_mode)
else:
dino_feat, invalid, sigmas, segs = net.forward(points, predict_segmentation=True)
return sigmas, segs, dino_feat
def convert_voxels(arr, map_dict):
f = np.vectorize(map_dict.__getitem__)
return f(arr)
def compute_occupancy_numbers_segmentation(y_pred, y_true, fov_mask, labels):
label_ids = list(labels.keys())[1:]
mask = y_true != 255
mask = np.logical_and(mask, fov_mask)
mask = mask.flatten()
y_pred = y_pred.flatten()[mask]
y_true = y_true.flatten()[mask]
tp = np.zeros(len(label_ids))
fp = np.zeros(len(label_ids))
fn = np.zeros(len(label_ids))
tn = np.zeros(len(label_ids))
for label_id in label_ids:
tp[label_id - 1] = np.sum(np.logical_and(y_true == label_id, y_pred == label_id))
fp[label_id - 1] = np.sum(np.logical_and(y_true != label_id, y_pred == label_id))
fn[label_id - 1] = np.sum(np.logical_and(y_true == label_id, y_pred != label_id))
tn[label_id - 1] = np.sum(np.logical_and(y_true != label_id, y_pred != label_id))
dim_conf = len(label_ids) + 1
bincount_values = dim_conf * y_true + y_pred
confusion_matrix = np.bincount(bincount_values, minlength=dim_conf*dim_conf).reshape(dim_conf, dim_conf)
return tp, fp, tn, fn, confusion_matrix
def compute_occupancy_recall_segmentation(y_pred, y_true, fov_mask, labels):
label_ids = list(labels.keys())[1:]
mask = y_true != 255
mask = np.logical_and(mask, fov_mask)
mask = mask.flatten()
y_pred = y_pred.flatten()[mask]
y_true = y_true.flatten()[mask]
tp = np.zeros(len(label_ids))
sum = np.zeros(len(label_ids))
for label_id in label_ids:
tp[label_id - 1] = np.sum(np.logical_and(y_true == label_id, y_pred > 0))
sum[label_id - 1] = np.sum(y_true == label_id)
return tp, sum
def compute_occupancy_numbers(y_pred, y_true, fov_mask):
mask = y_true != 255
mask = np.logical_and(mask, fov_mask)
mask = mask.flatten()
y_pred = y_pred.flatten()
y_true = y_true.flatten()
occ_true = y_true[mask] > 0
occ_pred = y_pred[mask] > 0
tp = np.sum(np.logical_and(occ_true == 1, occ_pred == 1))
fp = np.sum(np.logical_and(occ_true == 0, occ_pred == 1))
fn = np.sum(np.logical_and(occ_true == 1, occ_pred == 0))
tn = np.sum(np.logical_and(occ_true == 0, occ_pred == 0))
return tp, fp, tn, fn
if __name__ == "__main__":
#with torch.cuda.amp.autocast(dtype=torch.float16):
with torch.no_grad():
main()
|