Spaces:
Running
on
Zero
Running
on
Zero
File size: 13,266 Bytes
9e15541 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 |
import argparse
import sys
from omegaconf import open_dict
import matplotlib.pyplot as plt
sys.path.append(".")
from gen_voxelgrid_npy import save_as_voxel_ply
import logging
from pathlib import Path
import subprocess
import yaml
import cv2
import os
import numpy as np
from tqdm import tqdm
import pickle
import torch
from torch import nn
import torch.nn.functional as F
from hydra import compose, initialize
import matplotlib.pyplot as plt
# from datasets.kitti_360.kitti_360_dataset import Kitti360Dataset
from fusion import TSDFVolume, rigid_transform
from sscbench_dataset import SSCBenchDataset
from pathlib import Path
RELOAD_DATASET = True
DATASET_LENGTH = 100
FULL_EVAL = True
SAMPLE_EVERY = None
SAMPLE_OFFSET = 2
# SAMPLE_RANGE = list(range(1000, 1600))
SAMPLE_RANGE = None
import time
SIZE = 51.2 # Can be: 51.2, 25.6, 12.8
SIZES = (12.8, 25.6, 51.2)
VOXEL_SIZE = 0.1 # Needs: 0.2 % VOXEL_SIZE == 0
USE_CUSTOM_CUTOFFS = False
SIGMA_CUTOFF = 0.25
USE_ALPHA_WEIGHTING = True
USE_MAXPOOLING = False
GENERATE_PLY_FILES = True
PLY_ONLY_FOV = True
# PLY_IDS = [2235, 2495, 2385, 3385, 4360, 6035, 8575, 9010, 11260] # 10:40
# PLY_IDS = [2495, 6035, 8575, 9010, 11260] # 10
#PLY_IDS = [125, 5475, 6035, 6670, 6775, 7860, 8000]
# PLY_IDS = list(range(1000, 1600))
PLY_IDS = None
# PLY_PATH = Path("/usr/stud/hayler/dev/BehindTheScenes/scripts/benchmarks/sscbench/ply10_fov")
PLY_PATH = Path("<PATH-TO-PLY-OUTPUT>")
PLY_SIZES = [12.8, 25.6, 51.2]
if GENERATE_PLY_FILES:
assert (not USE_MAXPOOLING) and VOXEL_SIZE == 0.1
# make the necessary dirs
for size in PLY_SIZES:
if not os.path.exists(PLY_PATH / str(int(size))):
os.makedirs(PLY_PATH / str(int(size)))
# Setup of CUDA device and logging
os.system("nvidia-smi")
device = f'cuda:0'
# DO NOT TOUCH OR YOU WILL BREAK RUNS (should be None)
gpu_id = None
if gpu_id is not None:
print("GPU ID: " + str(gpu_id))
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = str(gpu_id)
if torch.cuda.is_available():
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = True
torch.backends.cudnn.deterministic = True
logging.basicConfig(level=logging.INFO)
times = []
def downsample_and_predict(data, net, pts, factor):
pts = pts.reshape(256*factor, 256*factor, 32*factor, 3)
sigmas = torch.zeros(256, 256, 32).numpy()
segs = torch.zeros(256, 256, 32).numpy()
chunk_size_x = chunk_size_y = 256
chunk_size_z = 32
n_chunks_x = int(256*factor / chunk_size_x)
n_chunks_y = int(256*factor / chunk_size_y)
n_chunks_z = int(32*factor / chunk_size_z)
b_x = chunk_size_x // factor # size of the mini blocks
b_y = chunk_size_y // factor
b_z = chunk_size_z // factor
for i in range(n_chunks_x):
for j in range(n_chunks_y):
for k in range(n_chunks_z):
pts_block = pts[i * chunk_size_x:(i + 1) * chunk_size_x, j * chunk_size_y:(j + 1) * chunk_size_y, k * chunk_size_z:(k + 1) * chunk_size_z]
sigmas_block, segs_block = predict_grid(data, net, pts_block)
sigmas_block = sigmas_block.reshape(chunk_size_x, chunk_size_y, chunk_size_z)
segs_block = segs_block.reshape(chunk_size_x, chunk_size_y, chunk_size_z, 19)
if USE_ALPHA_WEIGHTING:
alphas = 1 - torch.exp(- VOXEL_SIZE * sigmas_block)
segs_block = (alphas.unsqueeze(-1) * segs_block).unsqueeze(0)
else:
segs_block = (sigmas_block.unsqueeze(-1) * segs_block).unsqueeze(0)
segs_pool_list = [F.avg_pool3d(segs_block[..., i], kernel_size=factor, stride=factor, padding=0) for i in
range(segs_block.shape[-1])]
segs_pool = torch.stack(segs_pool_list, dim=-1).unsqueeze(0)
segs_pool = torch.argmax(segs_pool, dim=-1).detach().cpu().numpy()
# pool the observations
sigmas_block = F.max_pool3d(sigmas_block.unsqueeze(0), kernel_size=factor, stride=factor, padding=0).squeeze(0).detach().cpu().numpy()
sigmas[i * b_x:(i + 1) * b_x, j * b_y: (j + 1) * b_y, b_z * k:b_z * (k + 1)] = sigmas_block
segs[i * b_x:(i + 1) * b_x, j * b_y: (j + 1) * b_y, b_z * k:b_z * (k + 1)] = segs_pool
torch.cuda.empty_cache()
if USE_MAXPOOLING:
sigmas = F.max_pool3d(torch.tensor(sigmas).unsqueeze(0), kernel_size=3, stride=1, padding=1).squeeze(0).numpy()
return sigmas, segs
def use_custom_maxpool(_sigmas):
sigmas = torch.zeros(258, 258, 34)
sigmas[1:257, 1:257, 1:33] = torch.tensor(_sigmas)
sigmas_pooled = torch.zeros(256, 256, 32)
for i in range(256):
for j in range(256):
for k in range(32):
sigmas_pooled[i, j, k] = max(sigmas[i+1, j+1, k+1],
sigmas[i, j+1, k+1], sigmas[i+1, j, k+1],sigmas[i+1, j+1, k],
sigmas[i+2, j+1, k+1], sigmas[i+1, j+2, k+1],sigmas[i+1, j+1, k+2])
return sigmas_pooled
def plot_images(images_dict):
"""The images dict should include six images and six corresponding ids"""
images = images_dict["images"]
ids = images_dict["ids"]
fig, axes = plt.subplots(3, 2, figsize=(10, 6))
axes = axes.flatten()
for i, img in enumerate(images):
axes[i].imshow(images[i])
axes[i].axis("off")
axes[i].set_title(f"FrameId: {ids[i]}")
plt.subplots_adjust(wspace=0.01, hspace=0.01)
plt.show()
def plot_image_at_frame_id(dataset, frame_id):
for i in range(len(dataset)):
sequence, id, is_right = dataset._datapoints[i]
if id == frame_id:
data = dataset[i]
plt.figure(figsize=(10, 4))
plt.imshow(((data["imgs"][0] + 1) / 2).permute(1, 2, 0))
plt.gca().set_axis_off()
plt.show()
return
def identify_additional_invalids(target):
# Note: The Numpy implementation is a bit faster (about 0.1 seconds per iteration)
_t = np.concatenate([np.zeros([256, 256, 1]), target], axis=2)
invalids = np.cumsum(np.logical_and(_t != 255, _t != 0), axis=2)[:, :, :32] == 0
# _t = torch.cat([torch.zeros([256, 256, 1], device=device, dtype=torch.int32), torch.tensor(target, dtype=torch.int32).to(device)], dim=2)
# invalids = torch.cumsum((_t != 255) & (_t != 0), axis=2)[:,:, :32] == 0
# height cut-off (z > 6 ==> no invalid)
invalids[: , :, 7:] = 0
# only empty voxels matter
invalids[target != 0] = 0
# return invalids.cpu().numpy()
return invalids
def generate_point_grid(cam_E, vox_origin, voxel_size, scene_size, cam_k, img_W=1408, img_H=376):
"""
compute the 2D projection of voxels centroids
Parameters:
----------
cam_E: 4x4
=camera pose in case of NYUv2 dataset
=Transformation from camera to lidar coordinate in case of SemKITTI
cam_k: 3x3
camera intrinsics
vox_origin: (3,)
world(NYU)/lidar(SemKITTI) cooridnates of the voxel at index (0, 0, 0)
img_W: int
image width
img_H: int
image height
scene_size: (3,)
scene size in meter: (51.2, 51.2, 6.4) for SemKITTI and (4.8, 4.8, 2.88) for NYUv2
Returns
-------
projected_pix: (N, 2)
Projected 2D positions of voxels
fov_mask: (N,)
Voxels mask indice voxels inside image's FOV
pix_z: (N,)
Voxels'distance to the sensor in meter
"""
# Compute the x, y, z bounding of the scene in meter
vol_bnds = np.zeros((3, 2))
vol_bnds[:, 0] = vox_origin
vol_bnds[:, 1] = vox_origin + np.array(scene_size)
# Compute the voxels centroids in lidar cooridnates
vol_dim = np.ceil((vol_bnds[:, 1] - vol_bnds[:, 0]) / voxel_size).copy(order='C').astype(int)
xv, yv, zv = np.meshgrid(
range(vol_dim[0]),
range(vol_dim[1]),
range(vol_dim[2]),
indexing='ij'
)
vox_coords = np.concatenate([
xv.reshape(1, -1),
yv.reshape(1, -1),
zv.reshape(1, -1)
], axis=0).astype(int).T
# Project voxels'centroid from lidar coordinates to camera coordinates
cam_pts = TSDFVolume.vox2world(vox_origin, vox_coords, voxel_size)
cam_pts = rigid_transform(cam_pts, cam_E)
# Project camera coordinates to pixel positions
projected_pix = TSDFVolume.cam2pix(cam_pts, cam_k)
pix_x, pix_y = projected_pix[:, 0], projected_pix[:, 1]
# Eliminate pixels outside view frustum
pix_z = cam_pts[:, 2]
fov_mask = np.logical_and(pix_x >= 0,
np.logical_and(pix_x < img_W,
np.logical_and(pix_y >= 0,
np.logical_and(pix_y < img_H,
pix_z > 0))))
return cam_pts, fov_mask
def predict_grid(data_batch, net, points):
images = torch.stack(data_batch["imgs"], dim=0).unsqueeze(0).to(device).float()
poses = torch.tensor(np.stack(data_batch["poses"], 0)).unsqueeze(0).to(device).float()
projs = torch.tensor(np.stack(data_batch["projs"], 0)).unsqueeze(0).to(device).float()
poses = torch.inverse(poses[:, :1]) @ poses
n, nv, c, h, w = images.shape
net.compute_grid_transforms(projs, poses)
net.encode(images, projs, poses, ids_encoder=[0], ids_render=[0])
net.set_scale(0)
# q_pts = get_pts(X_RANGE, Y_RANGE, Z_RANGE, p_res[1], p_res_y, p_res[0])
# q_pts = q_pts.to(device).reshape(1, -1, 3)
# # _, invalid, sigmas = net.forward(q_pts)
#
points = points.reshape(1, -1, 3)
_, invalid, sigmas, segs = net.forward(points, predict_segmentation=True)
return sigmas, segs
def convert_voxels(arr, map_dict):
f = np.vectorize(map_dict.__getitem__)
return f(arr)
def compute_occupancy_numbers_segmentation(y_pred, y_true, fov_mask, labels):
label_ids = list(labels.keys())[1:]
mask = y_true != 255
mask = np.logical_and(mask, fov_mask)
mask = mask.flatten()
y_pred = y_pred.flatten()[mask]
y_true = y_true.flatten()[mask]
tp = np.zeros(len(label_ids))
fp = np.zeros(len(label_ids))
fn = np.zeros(len(label_ids))
tn = np.zeros(len(label_ids))
for label_id in label_ids:
tp[label_id - 1] = np.sum(np.logical_and(y_true == label_id, y_pred == label_id))
fp[label_id - 1] = np.sum(np.logical_and(y_true != label_id, y_pred == label_id))
fn[label_id - 1] = np.sum(np.logical_and(y_true == label_id, y_pred != label_id))
tn[label_id - 1] = np.sum(np.logical_and(y_true != label_id, y_pred != label_id))
return tp, fp, tn, fn
def compute_occupancy_numbers(y_pred, y_true, fov_mask):
mask = y_true != 255
mask = np.logical_and(mask, fov_mask)
mask = mask.flatten()
y_pred = y_pred.flatten()
y_true = y_true.flatten()
occ_true = y_true[mask] > 0
occ_pred = y_pred[mask] > 0
tp = np.sum(np.logical_and(occ_true == 1, occ_pred == 1))
fp = np.sum(np.logical_and(occ_true == 0, occ_pred == 1))
fn = np.sum(np.logical_and(occ_true == 1, occ_pred == 0))
tn = np.sum(np.logical_and(occ_true == 0, occ_pred == 0))
return tp, fp, tn, fn
def read_calib():
"""
:param calib_path: Path to a calibration text file.
:return: dict with calibration matrices.
"""
P = np.array(
[
552.554261,
0.000000,
682.049453,
0.000000,
0.000000,
552.554261,
238.769549,
0.000000,
0.000000,
0.000000,
1.000000,
0.000000,
]
).reshape(3, 4)
cam2velo = np.array(
[
0.04307104361,
-0.08829286498,
0.995162929,
0.8043914418,
-0.999004371,
0.007784614041,
0.04392796942,
0.2993489574,
-0.01162548558,
-0.9960641394,
-0.08786966659,
-0.1770225824,
]
).reshape(3, 4)
C2V = np.concatenate(
[cam2velo, np.array([0, 0, 0, 1]).reshape(1, 4)], axis=0
)
# print("C2V: ", C2V)
V2C = np.linalg.inv(C2V)
# print("V2C: ", V2C)
V2C = V2C[:3, :]
# print("V2C: ", V2C)
# reshape matrices
calib_out = {}
# 3x4 projection matrix for left camera
calib_out["P2"] = P
calib_out["Tr"] = np.identity(4) # 4x4 matrix
calib_out["Tr"][:3, :4] = V2C
return calib_out
def get_cam_k():
cam_k = np.array(
[
552.554261,
0.000000,
682.049453,
0.000000,
0.000000,
552.554261,
238.769549,
0.000000,
0.000000,
0.000000,
1.000000,
0.000000,
]
).reshape(3, 4)
return cam_k[:3, :3]
|