File size: 21,358 Bytes
9e15541
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
import os
import time
import xml.etree.ElementTree as ET
from collections import Counter, defaultdict
from pathlib import Path
from typing import Optional

import cv2
import numpy as np
import torch
import torch.nn.functional as F
import yaml
from scipy.spatial.transform import Rotation
from torch.utils.data import Dataset
from torchvision.transforms import ColorJitter

from datasets.kitti_360.annotation import KITTI360Bbox3D
from datasets.kitti_360.labels import labels

from augmentation import get_color_aug_fn


name2label = {label.name: label for label in labels}
id2ProposedId = {label.id: label.trainId for label in labels}

PropsedId2TrainId = dict(enumerate(list(set(id2ProposedId.values()))))
PropsedId2TrainId = {v : k for k, v in PropsedId2TrainId.items()}
id2TrainId = {k : PropsedId2TrainId[v] for k, v in id2ProposedId.items()}


class FisheyeToPinholeSampler:
    def __init__(self, K_target, target_image_size, calibs, rotation=None):
        self._compute_transform(K_target, target_image_size, calibs, rotation)

    def _compute_transform(self, K_target, target_image_size, calibs, rotation=None):
        x = torch.linspace(-1, 1, target_image_size[1]).view(1, -1).expand(target_image_size)
        y = torch.linspace(-1, 1, target_image_size[0]).view(-1, 1).expand(target_image_size)
        z = torch.ones_like(x)
        xyz = torch.stack((x, y, z), dim=-1).view(-1, 3)

        # Unproject
        xyz = (torch.inverse(torch.tensor(K_target)) @ xyz.T).T

        if rotation is not None:
            xyz = (torch.tensor(rotation) @ xyz.T).T

        # Backproject into fisheye
        xyz = xyz / torch.norm(xyz, dim=-1, keepdim=True)
        x = xyz[:, 0]
        y = xyz[:, 1]
        z = xyz[:, 2]

        xi_src = calibs["mirror_parameters"]["xi"]
        x = x / (z + xi_src)
        y = y / (z + xi_src)

        k1 = calibs["distortion_parameters"]["k1"]
        k2 = calibs["distortion_parameters"]["k2"]

        r = x*x + y*y
        factor = (1 + k1 * r + k2 * r * r)
        x = x * factor
        y = y * factor

        gamma0 = calibs["projection_parameters"]["gamma1"]
        gamma1 = calibs["projection_parameters"]["gamma2"]
        u0 = calibs["projection_parameters"]["u0"]
        v0 = calibs["projection_parameters"]["v0"]

        x = x * gamma0 + u0
        y = y * gamma1 + v0

        xy = torch.stack((x, y), dim=-1).view(1, *target_image_size, 2)
        self.sample_pts = xy

    def resample(self, img):
        img = img.unsqueeze(0)
        resampled_img = F.grid_sample(img, self.sample_pts, align_corners=True).squeeze(0)
        return resampled_img


class SSCBenchDataset(Dataset):
    def __init__(self,
                 data_path: str,
                 voxel_gt_path: str,
                 sequences: Optional[tuple],
                 target_image_size=(192, 640),
                 return_stereo=False,
                 return_depth=False,
                 data_segmentation_path=None,
                 frame_count=2,
                 keyframe_offset=0,
                 dilation=1,
                 eigen_depth=True,
                 color_aug=False,
                 load_kitti_360_segmentation_gt=False,
                 load_all=False,
                 load_fisheye=False,
                 fisheye_offset=0,
                 ):
        self.data_path = Path(data_path)
        self.voxel_gt_path = Path(voxel_gt_path)
        self.data_segmentation_path = data_segmentation_path
        self.pose_path = os.path.join("<PATH-KITTI-360-DATA-POSES>")
        self.target_image_size = target_image_size
        self.return_stereo = return_stereo
        self.return_depth = return_depth

        self.frame_count = frame_count
        self.dilation = dilation
        self.keyframe_offset = keyframe_offset
        self.eigen_depth = eigen_depth
        self.color_aug = color_aug
        self.load_kitti_360_segmentation_gt = load_kitti_360_segmentation_gt
        self.load_all = load_all
        self.load_fisheye = load_fisheye
        self.fisheye_offset = fisheye_offset

        if sequences is None:
            self._sequences = self._get_sequences(self.data_path)
        else:
            self._sequences = [f"2013_05_28_drive_00{s:02d}_sync" for s in sequences]

        self._calibs = self._load_calibs(self.data_path)
        self._left_offset = ((self.frame_count - 1) // 2 + self.keyframe_offset) * self.dilation

        self._img_ids, self._poses = self._load_poses(self.pose_path, self._sequences)
        self._perspective_folder = "data_rect"
        self._segmentation_perspective_folder = "data_192x640"
        self._segmentation_fisheye_folder = "data_192x640_0x-15"

        if self.load_all:
            self._datapoints = self._load_all_datapoints(self.data_path, self._sequences)
        else:
            self._datapoints = self._load_datapoints(self.voxel_gt_path, self._sequences)

        self._skip = 0
        self.length = len(self._datapoints)

    @staticmethod
    def _get_sequences(data_path):
        all_sequences = []

        seqs_path = Path(data_path) / "data_2d_raw"
        for seq in seqs_path.iterdir():
            if not seq.is_dir():
                continue
            all_sequences.append(seq.name)

        return all_sequences

    @staticmethod
    def _load_calibs(data_path, fisheye_rotation=(0, 0)):
        data_path = Path(data_path)

        calib_folder = data_path / "calibration"
        cam_to_pose_file = calib_folder / "calib_cam_to_pose.txt"
        cam_to_velo_file = calib_folder / "calib_cam_to_velo.txt"
        intrinsics_file = calib_folder / "perspective.txt"
        fisheye_02_file = calib_folder / "image_02.yaml"
        fisheye_03_file = calib_folder / "image_03.yaml"

        cam_to_pose_data = {}
        with open(cam_to_pose_file, 'r') as f:
            for line in f.readlines():
                key, value = line.split(':', 1)
                try:
                    cam_to_pose_data[key] = np.array([float(x) for x in value.split()], dtype=np.float32)
                except ValueError:
                    pass

        cam_to_velo_data = None
        with open(cam_to_velo_file, 'r') as f:
            line = f.readline()
            try:
                cam_to_velo_data = np.array([float(x) for x in line.split()], dtype=np.float32)
            except ValueError:
                pass

        intrinsics_data = {}
        with open(intrinsics_file, 'r') as f:
            for line in f.readlines():
                key, value = line.split(':', 1)
                try:
                    intrinsics_data[key] = np.array([float(x) for x in value.split()], dtype=np.float32)
                except ValueError:
                    pass

        with open(fisheye_02_file, 'r') as f:
            f.readline() # Skips first line that defines the YAML version
            fisheye_02_data = yaml.safe_load(f)

        with open(fisheye_03_file, 'r') as f:
            f.readline() # Skips first line that defines the YAML version
            fisheye_03_data = yaml.safe_load(f)

        im_size_rect = (int(intrinsics_data["S_rect_00"][1]), int(intrinsics_data["S_rect_00"][0]))
        im_size_fish = (fisheye_02_data["image_height"], fisheye_02_data["image_width"])

        # Projection matrices
        # We use these projection matrices also when resampling the fisheye cameras.
        # This makes downstream processing easier, but it could be done differently.
        P_rect_00 = np.reshape(intrinsics_data['P_rect_00'], (3, 4))
        P_rect_01 = np.reshape(intrinsics_data['P_rect_01'], (3, 4))

        # Rotation matrices from raw to rectified -> Needs to be inverted later
        R_rect_00 = np.eye(4, dtype=np.float32)
        R_rect_01 = np.eye(4, dtype=np.float32)
        R_rect_00[:3, :3] = np.reshape(intrinsics_data['R_rect_00'], (3, 3))
        R_rect_01[:3, :3] = np.reshape(intrinsics_data['R_rect_01'], (3, 3))

        # Rotation matrices from resampled fisheye to raw fisheye
        fisheye_rotation = np.array(fisheye_rotation).reshape((1, 2))
        R_02 = np.eye(4, dtype=np.float32)
        R_03 = np.eye(4, dtype=np.float32)
        R_02[:3, :3] = Rotation.from_euler("xy", fisheye_rotation[:, [1, 0]], degrees=True).as_matrix().astype(np.float32)
        R_03[:3, :3] = Rotation.from_euler("xy", fisheye_rotation[:, [1, 0]] * np.array([[1, -1]]), degrees=True).as_matrix().astype(np.float32)

        # Load cam to pose transforms
        T_00_to_pose = np.eye(4, dtype=np.float32)
        T_01_to_pose = np.eye(4, dtype=np.float32)
        T_02_to_pose = np.eye(4, dtype=np.float32)
        T_03_to_pose = np.eye(4, dtype=np.float32)
        T_00_to_velo = np.eye(4, dtype=np.float32)

        T_00_to_pose[:3, :] = np.reshape(cam_to_pose_data["image_00"], (3, 4))
        T_01_to_pose[:3, :] = np.reshape(cam_to_pose_data["image_01"], (3, 4))
        T_02_to_pose[:3, :] = np.reshape(cam_to_pose_data["image_02"], (3, 4))
        T_03_to_pose[:3, :] = np.reshape(cam_to_pose_data["image_03"], (3, 4))
        T_00_to_velo[:3, :] = np.reshape(cam_to_velo_data, (3, 4))

        # Compute cam to pose transforms for rectified perspective cameras
        T_rect_00_to_pose = T_00_to_pose @ np.linalg.inv(R_rect_00)
        T_rect_01_to_pose = T_01_to_pose @ np.linalg.inv(R_rect_01)

        # Compute cam to pose transform for fisheye cameras
        T_02_to_pose = T_02_to_pose @ R_02
        T_03_to_pose = T_03_to_pose @ R_03

        # Compute velo to cameras and velo to pose transforms
        T_velo_to_rect_00 = R_rect_00 @ np.linalg.inv(T_00_to_velo)
        T_velo_to_pose = T_rect_00_to_pose @ T_velo_to_rect_00
        T_velo_to_rect_01 = np.linalg.inv(T_rect_01_to_pose) @ T_velo_to_pose

        # Calibration matrix is the same for both perspective cameras
        K = P_rect_00[:3, :3]

        # Normalize calibration
        f_x = K[0, 0] / im_size_rect[1]
        f_y = K[1, 1] / im_size_rect[0]
        c_x = K[0, 2] / im_size_rect[1]
        c_y = K[1, 2] / im_size_rect[0]

        # Change to image coordinates [-1, 1]
        K[0, 0] = f_x * 2.
        K[1, 1] = f_y * 2.
        K[0, 2] = c_x * 2. - 1
        K[1, 2] = c_y * 2. - 1

        # Convert fisheye calibration to [-1, 1] image dimensions
        fisheye_02_data["projection_parameters"]["gamma1"] = (fisheye_02_data["projection_parameters"]["gamma1"] / im_size_fish[1]) * 2.
        fisheye_02_data["projection_parameters"]["gamma2"] = (fisheye_02_data["projection_parameters"]["gamma2"] / im_size_fish[0]) * 2.
        fisheye_02_data["projection_parameters"]["u0"] = (fisheye_02_data["projection_parameters"]["u0"] / im_size_fish[1]) * 2. - 1.
        fisheye_02_data["projection_parameters"]["v0"] = (fisheye_02_data["projection_parameters"]["v0"] / im_size_fish[0]) * 2. - 1.

        fisheye_03_data["projection_parameters"]["gamma1"] = (fisheye_03_data["projection_parameters"]["gamma1"] / im_size_fish[1]) * 2.
        fisheye_03_data["projection_parameters"]["gamma2"] = (fisheye_03_data["projection_parameters"]["gamma2"] / im_size_fish[0]) * 2.
        fisheye_03_data["projection_parameters"]["u0"] = (fisheye_03_data["projection_parameters"]["u0"] / im_size_fish[1]) * 2. - 1.
        fisheye_03_data["projection_parameters"]["v0"] = (fisheye_03_data["projection_parameters"]["v0"] / im_size_fish[0]) * 2. - 1.

        # Use same camera calibration as perspective cameras for resampling
        # K_fisheye = np.eye(3, dtype=np.float32)
        # K_fisheye[0, 0] = 2
        # K_fisheye[1, 1] = 2

        K_fisheye = K

        calibs = {
            "K_perspective": K,
            "K_fisheye": K_fisheye,
            "T_cam_to_pose": {
                "00": T_rect_00_to_pose,
                "01": T_rect_01_to_pose,
                "02": T_02_to_pose,
                "03": T_03_to_pose,
            },
            "T_velo_to_cam": {
                "00": T_velo_to_rect_00,
                "01": T_velo_to_rect_01,
            },
            "T_velo_to_pose": T_velo_to_pose,
            "fisheye": {
                "calib_02": fisheye_02_data,
                "calib_03": fisheye_03_data,
                "R_02": R_02[:3, :3],
                "R_03": R_03[:3, :3]
            },
            "im_size": im_size_rect
        }

        return calibs

    @staticmethod
    def _load_poses(pose_path, sequences):
        ids = {}
        poses = {}

        for seq in sequences:
            pose_file = Path(pose_path) / seq / f"poses.txt"

            try:
                pose_data = np.loadtxt(pose_file)
            except FileNotFoundError:
                print(f'Ground truth poses are not avaialble for sequence {seq}, {pose_file}.')

            ids_seq = pose_data[:, 0].astype(int)
            poses_seq = pose_data[:, 1:].astype(np.float32).reshape((-1, 3, 4))
            poses_seq = np.concatenate((poses_seq, np.zeros_like(poses_seq[:, :1, :])), axis=1)
            poses_seq[:, 3, 3] = 1

            ids[seq] = ids_seq
            poses[seq] = poses_seq
        return ids, poses

    @staticmethod
    def _get_resamplers(calibs, K_target, target_image_size):
        resampler_02 = FisheyeToPinholeSampler(K_target, target_image_size, calibs["fisheye"]["calib_02"], calibs["fisheye"]["R_02"])
        resampler_03 = FisheyeToPinholeSampler(K_target, target_image_size, calibs["fisheye"]["calib_03"], calibs["fisheye"]["R_03"])

        return resampler_02, resampler_03

    @staticmethod
    def _load_datapoints(voxel_gt_path, sequences):
        datapoints = []
        for seq in sorted(sequences):
            ids = [int(file.name[:6]) for file in sorted((voxel_gt_path / seq).glob("*_1_1.npy"))]
            datapoints_seq = [(seq, id, False) for id in ids]
            datapoints.extend(datapoints_seq)
        return datapoints

    @staticmethod
    def _load_all_datapoints(voxel_gt_path, sequences):
        datapoints = []
        for seq in sorted(sequences):
            ids = [int(file.name[:6]) for file in sorted((voxel_gt_path / 'data_2d_raw' / seq / 'image_00' / 'data_rect').glob("*.png"))]
            datapoints_seq = [(seq, id, False) for id in ids]
            datapoints.extend(datapoints_seq)
        return datapoints

    def load_images(self, seq, img_ids):
        imgs_p_left = []

        for id in img_ids:
            # id = self._img_ids[seq][id]
            img_perspective = cv2.cvtColor(cv2.imread(os.path.join(self.data_path, "data_2d_raw", seq, "image_00", self._perspective_folder, f"{id:06d}.png")), cv2.COLOR_BGR2RGB).astype(np.float32) / 255

            imgs_p_left += [img_perspective]

        return imgs_p_left
    
    def load_fisheye_images(self, seq, img_ids):
        imgs_f_left, imgs_f_right = [], []

        for id in img_ids:
            #img_fisheye = cv2.cvtColor(cv2.imread(os.path.join(self.data_path, "data_2d_raw", seq, "image_02", self._segmentation_fisheye_folder, f"{id:010d}.png")), cv2.COLOR_BGR2RGB).astype(np.float32) / 255
            #img_fisheye = cv2.cvtColor(cv2.imread(os.path.join(self.data_path, "data_2d_raw", seq, "image_03", self._segmentation_fisheye_folder, f"{id:010d}.png")), cv2.COLOR_BGR2RGB).astype(np.float32) / 255

            id = self._img_ids[seq][id]
            
            img_fisheye_left = cv2.cvtColor(cv2.imread(os.path.join("<PATH-KITTI-360-DATA-POSES>", "data_2d_raw", seq, "image_02", self._segmentation_fisheye_folder, f"{id:010d}.png")), cv2.COLOR_BGR2RGB).astype(np.float32) / 255
            img_fisheye_right = cv2.cvtColor(cv2.imread(os.path.join("<PATH-KITTI-360-DATA-POSES>", "data_2d_raw", seq, "image_03", self._segmentation_fisheye_folder, f"{id:010d}.png")), cv2.COLOR_BGR2RGB).astype(np.float32) / 255

            imgs_f_left += [img_fisheye_left]
            imgs_f_right += [img_fisheye_right]

        return imgs_f_left, imgs_f_right

    def load_voxel_gt(self, sequence, img_ids):
        voxel_gt = []

        for id in img_ids:
            target_1_path = os.path.join(self.voxel_gt_path, sequence, f"{id:06d}" + "_1_1.npy")

            if not self.load_all or os.path.isfile(target_1_path):
                voxel_gt.append(np.load(target_1_path))
            else:
                voxel_gt.append(None)

        return voxel_gt

    def process_img(self, img: np.array, color_aug_fn=None, resampler:FisheyeToPinholeSampler=None):
        if resampler is not None and not self.is_preprocessed:
            img = torch.tensor(img).permute(2, 0, 1)
            img = resampler.resample(img)
        else:
            if self.target_image_size:
                img = cv2.resize(img, (self.target_image_size[1], self.target_image_size[0]), interpolation=cv2.INTER_LINEAR)
            img = np.transpose(img, (2, 0, 1))
            img = torch.tensor(img)

        if color_aug_fn is not None:
            img = color_aug_fn(img)

        img = img * 2 - 1
        return img

    def load_depth(self, seq, img_id, is_right):
        points = np.fromfile(os.path.join(self.data_path, "data_3d_raw", seq, "velodyne_points", "data", f"{img_id:010d}.bin"), dtype=np.float32).reshape(-1, 4)
        points[:, 3] = 1.0

        T_velo_to_cam = self._calibs["T_velo_to_cam"]["00" if not is_right else "01"]
        K = self._calibs["K_perspective"]

        # project the points to the camera
        velo_pts_im = np.dot(K @ T_velo_to_cam[:3, :], points.T).T
        velo_pts_im[:, :2] = velo_pts_im[:, :2] / velo_pts_im[:, 2][..., None]

        # the projection is normalized to [-1, 1] -> transform to [0, height-1] x [0, width-1]
        velo_pts_im[:, 0] = np.round((velo_pts_im[:, 0] * .5 + .5) * self.target_image_size[1])
        velo_pts_im[:, 1] = np.round((velo_pts_im[:, 1] * .5 + .5) * self.target_image_size[0])

        # check if in bounds
        val_inds = (velo_pts_im[:, 0] >= 0) & (velo_pts_im[:, 1] >= 0)
        val_inds = val_inds & (velo_pts_im[:, 0] < self.target_image_size[1]) & (velo_pts_im[:, 1] < self.target_image_size[0])
        velo_pts_im = velo_pts_im[val_inds, :]

        # project to image
        depth = np.zeros(self.target_image_size)
        depth[velo_pts_im[:, 1].astype(np.int32), velo_pts_im[:, 0].astype(np.int32)] = velo_pts_im[:, 2]

        # find the duplicate points and choose the closest depth
        inds = velo_pts_im[:, 1] * (self.target_image_size[1] - 1) + velo_pts_im[:, 0] - 1
        dupe_inds = [item for item, count in Counter(inds).items() if count > 1]
        for dd in dupe_inds:
            pts = np.where(inds == dd)[0]
            x_loc = int(velo_pts_im[pts[0], 0])
            y_loc = int(velo_pts_im[pts[0], 1])
            depth[y_loc, x_loc] = velo_pts_im[pts, 2].min()
        depth[depth < 0] = 0

        return depth[None, :, :]

    def __getitem__(self, index: int):
        _start_time = time.time()

        if index >= self.length:
            raise IndexError()

        if self._skip != 0:
            index += self._skip

        sequence, id, is_right = self._datapoints[index]

        load_left = (not is_right) or self.return_stereo
        load_right = is_right or self.return_stereo

        ids = [id]
        ids_fish = [id + self.fisheye_offset]

        if self.color_aug:
            color_aug_fn = get_color_aug_fn(ColorJitter.get_params(brightness=(0.8, 1.2), contrast=(0.8, 1.2), saturation=(0.8, 1.2), hue=(-0.1, 0.1)))
        else:
            color_aug_fn = None

        _start_time_loading = time.time()
        imgs_p_left = self.load_images(sequence, ids)
        imgs_f_left, imgs_f_right = self.load_fisheye_images(sequence, ids_fish)
        voxel_gt = self.load_voxel_gt(sequence, ids)
        _loading_time = np.array(time.time() - _start_time_loading)

        _start_time_processing = time.time()
        imgs_p_left = [self.process_img(img, color_aug_fn=color_aug_fn) for img in imgs_p_left]
        imgs_f_left = [self.process_img(img, color_aug_fn=color_aug_fn) for img in imgs_f_left]
        imgs_f_right = [self.process_img(img, color_aug_fn=color_aug_fn) for img in imgs_f_right]
        _processing_time = np.array(time.time() - _start_time_processing)

        # These poses are not camera to world !!
        poses_p_left = [self._poses[sequence][i, :, :] @ self._calibs["T_cam_to_pose"]["00"] for i in ids] if load_left else []
        poses_f_left = [self._poses[sequence][i, :, :] @ self._calibs["T_cam_to_pose"]["02"] for i in ids_fish]
        poses_f_right = [self._poses[sequence][i, :, :] @ self._calibs["T_cam_to_pose"]["03"] for i in ids_fish]

        projs_p_left = [self._calibs["K_perspective"] for _ in ids] if load_left else []
        projs_f_left = [self._calibs["K_fisheye"] for _ in ids_fish]
        projs_f_right = [self._calibs["K_fisheye"] for _ in ids_fish]

        imgs = imgs_p_left
        projs = projs_p_left
        poses = poses_p_left

        if self.load_fisheye:
            imgs += imgs_f_left + imgs_f_right
            projs += projs_f_left + projs_f_right
            poses += poses_f_left + poses_f_right

        _proc_time = np.array(time.time() - _start_time)

        # print(_loading_time, _processing_time, _proc_time)

        data = {
            "imgs": imgs,
            "projs": projs,
            "voxel_gt": voxel_gt,
            "poses": poses,
            "t__get_item__": np.array([_proc_time]),
            "index": np.array([index])
        }

        return data

    def __len__(self) -> int:
        return self.length