Spaces:
Running
on
Zero
Running
on
Zero
# | |
# Authors: Wouter Van Gansbeke & Simon Vandenhende | |
# Licensed under the CC BY-NC 4.0 license (https://creativecommons.org/licenses/by-nc/4.0/) | |
import numpy as np | |
import pydensecrf.densecrf as dcrf | |
import pydensecrf.utils as utils | |
import torch | |
import torch.nn.functional as F | |
import torchvision.transforms.functional as VF | |
MAX_ITER = 10 | |
POS_W = 3 | |
POS_XY_STD = 0.3 # 1 | |
Bi_W = 4 | |
Bi_XY_STD = 20 # 67 | |
Bi_RGB_STD = 3 | |
def dense_crf(image_tensor: torch.FloatTensor, output_logits: torch.FloatTensor): | |
image = np.array(VF.to_pil_image(image_tensor))[:, :, ::-1] | |
H, W = image.shape[:2] | |
image = np.ascontiguousarray(image) | |
output_logits = F.interpolate(output_logits.unsqueeze(0), size=(H, W), mode="bilinear", | |
align_corners=False).squeeze() | |
output_probs = F.softmax(output_logits, dim=0).cpu().numpy() | |
c = output_probs.shape[0] | |
h = output_probs.shape[1] | |
w = output_probs.shape[2] | |
U = utils.unary_from_softmax(output_probs) | |
U = np.ascontiguousarray(U) | |
d = dcrf.DenseCRF2D(w, h, c) | |
d.setUnaryEnergy(U) | |
d.addPairwiseGaussian(sxy=POS_XY_STD, compat=POS_W) | |
d.addPairwiseBilateral(sxy=Bi_XY_STD, srgb=Bi_RGB_STD, rgbim=image, compat=Bi_W) | |
Q = d.inference(MAX_ITER) | |
Q = np.array(Q).reshape((c, h, w)) | |
return Q | |