jev-aleks's picture
remove inverse line
cfb4ec2
import torch
import torch.nn as nn
import torch.autograd.profiler as profiler
import torch.nn.functional as F
from torch.cuda.amp import autocast
from torchvision import transforms
from scenedino.common.cameras.pinhole import (
outside_frustum,
project_to_image,
pts_into_camera,
)
from scenedino.common.cameras.pinhole import EPS
from scenedino.common.positional_encoding import encoding_mode
from scenedino.models.base_model import BaseModel
# torch.inverse(torch.ones((1, 1), device="cuda:0"))
class BTSNet(BaseModel):
def __init__(
self,
conf,
encoder: nn.Module,
code_xyz,
heads: dict[str, nn.Module],
final_pred_head: str | None = None,
uncertainty_predictor: nn.Module | None = None,
ren_nc=None,
downstream_head: nn.Module | None = None
):
super().__init__()
self.encoder = encoder
self.code_xyz = code_xyz
self.heads = nn.ModuleDict(heads)
self.uncertainty_predictor = uncertainty_predictor
self.extra_outs = self.encoder.extra_outs
if final_pred_head:
self.final_pred_head = final_pred_head
else:
self.final_pred_head = list(self.heads.keys())[0]
self.requires_bottleneck_feats = False
# for _, head in self.heads.items():
# if hasattr(head, "require_bottleneck_feats"):
# if head.require_bottleneck_feats and (
# head.independent_token_net.__class__.__name__
# == "NeuRayIndependentToken"
# ): ## For read out token type: "NeuRayIndependentToken"
# self.requires_bottleneck_feats = True
# break
self.use_viewdirs = conf.get("use_viewdirs", False)
# TODO: figure out how to pass z_near and z_far to the model, probably outside with the positional encoding
self.d_min, self.d_max = conf.get("z_near", 3), conf.get("z_far", 80)
self.learn_empty, self.empty_empty, self.inv_z = (
conf.get("learn_empty", True),
conf.get("empty_empty", False),
conf.get("inv_z", True),
)
self.color_interpolation = conf.get("color_interpolation", "bilinear")
# TODO: rethink encoding mode
self.encoding_mode = encoding_mode(
conf.get("code_mode", "z"), self.d_min, self.d_max, self.inv_z, EPS
)
self.flip_augmentation = conf.get("flip_augmentation", False)
self.return_sample_depth = conf.get("return_sample_depth", False)
self.sample_color = conf.get("sample_color", True)
self.predict_dino = conf.get("predict_dino", False)
# TODO: manage _d_out in another way
d_in = self.encoder.latent_size + self.code_xyz.d_out ### 64 + 39
if self.sample_color and self.predict_dino:
dino_dims = conf.get("dino_dims", 16)
d_out = 1 + dino_dims
elif self.sample_color:
d_out = 1
else:
d_out = 4
self._d_in, self._d_out = d_in, d_out
if self.learn_empty:
self.empty_feature = nn.Parameter(
torch.randn((self.encoder.latent_size,), requires_grad=True)
)
self._scale = 0 ## set spatial resolution size accoridng to the scale of output feature map from the encoder
self.downstream_head = downstream_head
if downstream_head is not None:
self.gt_classes = downstream_head.gt_classes
else:
self.gt_classes = None
def set_scale(self, scale):
self._scale = scale
def get_scale(self):
return self._scale
def compute_grid_transforms(self, *args, **kwargs):
pass
def encode(
self,
images,
Ks,
poses_c2w,
ids_encoder=None,
ids_render=None,
ids_loss=None,
images_alt=None,
combine_ids=None,
color_frame_filter=None,
loss_feature_grid_shift=None,
):
with autocast(enabled=False):
poses_w2c = torch.inverse(poses_c2w.float())
if ids_encoder is None:
images_encoder = images
Ks_encoder = Ks
poses_w2c_encoder = poses_w2c
ids_encoder = list(range(len(images)))
else:
images_encoder = images[:, ids_encoder]
Ks_encoder = Ks[:, ids_encoder]
poses_w2c_encoder = poses_w2c[:, ids_encoder]
if ids_loss is None:
images_loss = images
ids_loss = list(range(len(images)))
else:
images_loss = images[:, ids_loss]
# TODO: Why?
if images_alt is not None:
images = images_alt
else:
images = images * 0.5 + 0.5
if ids_render is None:
images_render = images
Ks_render = Ks
poses_w2c_render = poses_w2c
ids_render = list(range(len(images)))
else:
images_render = images[:, ids_render]
Ks_render = Ks[:, ids_render]
poses_w2c_render = poses_w2c[:, ids_render]
if combine_ids is not None:
combine_ids = list(list(group) for group in combine_ids)
get_combined = set(sum(combine_ids, []))
for i in range(images.shape[1]):
if i not in get_combined:
combine_ids.append((i,))
remap_encoder = {v: i for i, v in enumerate(ids_encoder)}
remap_render = {v: i for i, v in enumerate(ids_render)}
comb_encoder = [
[remap_encoder[i] for i in group if i in ids_encoder]
for group in combine_ids
]
comb_render = [
[remap_render[i] for i in group if i in ids_render]
for group in combine_ids
]
comb_encoder = [group for group in comb_encoder if len(group) > 0]
comb_render = [group for group in comb_render if len(group) > 0]
else:
comb_encoder = None
comb_render = None
## Note: This is yet to be feature map before passing img to encoder
n_, nv_, c_, h_, w_ = images_encoder.shape ### [n_, nv_, 3:=RGB, 192, 640]
n_loss_, nv_loss_, _, _, _ = images_loss.shape
if self.flip_augmentation and self.training: ## data augmentation for color
do_flip = (torch.rand(1) > 0.5).item()
else:
do_flip = False
if do_flip:
images_encoder = torch.flip(images_encoder, dims=(-1,))
# images_loss = torch.flip(images_loss, dims=(-1,))
image_latents_ms = self.encoder(images_encoder.view(n_ * nv_, c_, h_, w_))
# TODO: figure out patch shift
if loss_feature_grid_shift is not None and loss_feature_grid_shift != (0, 0):
i_shift = 8 + loss_feature_grid_shift[0]
j_shift = 8 + loss_feature_grid_shift[1]
n, v, _, _, _ = images_loss.shape
images_loss = images_loss.flatten(0, 1)
images_loss = transforms.Pad(8, padding_mode="edge")(images_loss)
images_loss = transforms.functional.crop(images_loss, i_shift, j_shift, h_, w_)
images_loss = images_loss.unflatten(0, (n, v))
image_loss_latents_ms = self.encoder(images_loss.view(n_loss_ * nv_loss_, c_, h_, w_),
ground_truth=True)
if do_flip:
image_latents_ms = [torch.flip(il, dims=(-1,)) for il in image_latents_ms]
# image_loss_latents_ms = [torch.flip(il, dims=(-1,)) for il in image_loss_latents_ms]
_, _, h_, w_ = image_latents_ms[
0
].shape ## get spatial resol from 1st layer out of 4 from feature maps generated by Enc
image_latents_ms = [
F.interpolate(image_latents, size=(h_, w_)).view(
n_, nv_, -1, h_, w_
)
for image_latents in image_latents_ms
] ## upsampling the feature maps from down-sampled 4 layers to the same spatial resolution of 1st layer
# img_feat_ms = [F.interpolate(feat_latents, size=(h_, w_)).view(n_, nv_, img_feat_ms[-1].shape[1], h_, w_) for feat_latents in img_feat_ms] ## upsampling the feature maps from down-sampled 4 layers to the same spatial resolution of 1st layer
_, _, h_, w_ = image_loss_latents_ms[
0
].shape ## get spatial resol from 1st layer out of 4 from feature maps generated by Enc
image_loss_latents_ms = [
image_loss_latents.view(
n_loss_, nv_loss_, -1, h_, w_
)
for image_loss_latents in image_loss_latents_ms
]
if self.extra_outs > 0:
self.grid_f_extra = [
il_ms[:, :, -self.extra_outs:, :, :] for il_ms in image_latents_ms
]
image_latents_ms = [
il_ms[:, :, :-self.extra_outs, :, :] for il_ms in image_latents_ms
]
else:
self.grid_f_extra = None
## feature
self.grid_f_features = image_latents_ms
self.grid_f_Ks = Ks_encoder
self.grid_f_poses_w2c = poses_w2c_encoder
self.grid_f_combine = comb_encoder
## color
self.grid_c_imgs = images_render.detach()
self.grid_c_Ks = Ks_render
self.grid_c_poses_w2c = poses_w2c_render
self.grid_c_combine = comb_render
self.grid_l_loss_features = image_loss_latents_ms
self.color_frame_filter = color_frame_filter
def pad_zeros(self, x, padding):
shape = list(x.shape)
shape[-2] += 2 * padding
shape[-1] += 2 * padding
padded_x = torch.zeros(shape, dtype=x.dtype, device=x.device)
padded_x[..., padding:-padding, padding:-padding] = x
return padded_x
def sample_features(
self,
xyz,
# use_single_featuremap=True
):
## Get the shape of the input point cloud and the feature grid (n, pts, spatial_coordinate == 3)
B, n_pts, _ = xyz.shape
B, n_views, c_, h_, w_ = self.grid_f_features[
self._scale
].shape # [B, n_views, C, H, W]
with autocast(enabled=False):
xyz_projected = pts_into_camera(
xyz, self.grid_f_poses_w2c
) # [B, n_views, n_pts, 3]
distance = torch.norm(xyz_projected, dim=-2, keepdim=True)
xy, z = project_to_image(xyz_projected, self.grid_f_Ks)
invalid = outside_frustum(xy, z)
# For numerical stability with AMP. Should not affect training outcome
xy = xy.clamp(-2, 2)
"""given a vector p = (x, y, z) this is the difference of normalizing either:z ||p|| = sqrt(x^2 + y^2 + z^2). So you either give the network (x, y, z_normalized) or (x, y, ||p||_normalized) as input. It is just different parameterizations of the same point."""
xyz_code = self.code_xyz(
self.encoding_mode(xy, z, distance).view(B * n_views * n_pts, -1)
).view(B, n_views, n_pts, -1)
# These samples are from different scales
sampled_features = (
F.grid_sample(
self.grid_f_features[self._scale].view(B * n_views, c_, h_, w_),
xy.view(B * n_views, 1, -1, 2),
mode="bilinear",
padding_mode="border",
align_corners=False,
)
.view(B, n_views, c_, n_pts)
.permute(0, 1, 3, 2)
) ## set x,y coordinates as grid feature
if self.learn_empty:
## "empty space" can refer to areas in a scene where there is no object, or it could also refer to areas that are not observed or are beyond the range of the sensor. This allows the model to have a distinct learned representation for "empty" space, which can be beneficial in tasks like 3D reconstruction where understanding both the objects in a scene and the empty space between them is important.
## Replace invalid features in the sampled features tensor with the corresponding features from the expanded empty feature
empty_feature_expanded = self.empty_feature.view(1, 1, 1, c_).expand(
B, n_views, n_pts, c_
) ## trainable parameter, initialized with random features
sampled_features[invalid.expand(-1, -1, -1, c_)] = empty_feature_expanded[
invalid.expand(-1, -1, -1, c_)
] ## broadcasting and make it fit to feature map
sampled_features = torch.cat(
(sampled_features, xyz_code), dim=-1
) # [B, n_views, n_pts, C+C_pos_emb]
return (
sampled_features.permute(0, 2, 1, 3),
invalid[..., 0].permute(0, 2, 1),
)
def sample_colors(self, xyz, **kwargs):
n_, n_pts, _ = xyz.shape ## n := batch size, n_pts := #_points in world coord.
n_, nv_, c_, h_, w_ = self.grid_c_imgs.shape ## nv_ := #_views
ray_info = kwargs.get("ray_info", None)
render_flow = kwargs.get("render_flow", False)
xyz_projected = pts_into_camera(
xyz, self.grid_c_poses_w2c
) # [B, n_views, n_pts, 3]
distance = torch.norm(xyz_projected, dim=-2, keepdim=True)
xy, z = project_to_image(xyz_projected, self.grid_c_Ks)
# For numerical stability with AMP. Should not affect training outcome.
xy = xy.clamp(-2, 2)
invalid = outside_frustum(xy, z)
sampled_colors = (
F.grid_sample(
self.grid_c_imgs.view(n_ * nv_, c_, h_, w_),
xy.view(n_ * nv_, 1, -1, 2),
mode=self.color_interpolation,
padding_mode="border",
align_corners=False,
)
.view(n_, nv_, c_, n_pts)
.permute(0, 1, 3, 2)
) ## Sample colors from the grid using the projected world coordinates.
assert not torch.any(
torch.isnan(sampled_colors)
) ## Check that there are no NaN values in the sampled colors tensor.
if (
self.grid_c_combine is not None
): ## If self.grid_c_combine is not None, combine colors from multiple points in the same group.
invalid_groups, sampled_colors_groups = [], []
for (
group
) in (
self.grid_c_combine
): ## group:=list of indices that correspond to a subset of the total set of points in the point cloud. These subsets are combined to create a single image of the entire point cloud from multiple views.
if (
len(group) == 1
): ## If the group contains only one point, append the corresponding invalid tensor and sampled colors tensor to the respective lists.
invalid_groups.append(invalid[:, group])
sampled_colors_groups.append(sampled_colors[:, group])
continue
invalid_to_combine = invalid[
:, group
] ## Otherwise, combine colors from the group by picking the color of the first valid point in the group.
colors_to_combine = sampled_colors[:, group]
indices = torch.min(invalid_to_combine, dim=1, keepdim=True)[
1
] ## Get the index of the first valid point in the group.
invalid_picked = torch.gather(
invalid_to_combine, dim=1, index=indices
) ## Pick the invalid tensor and sampled colors tensor corresponding to the first valid point in the group.
colors_picked = torch.gather(
colors_to_combine,
dim=1,
index=indices.expand(-1, -1, -1, colors_to_combine.shape[-1]),
)
invalid_groups.append(
invalid_picked
) ## Append the picked invalid tensor and sampled colors tensor to the respective lists.
sampled_colors_groups.append(colors_picked)
invalid = torch.cat(
invalid_groups, dim=1
) ## Concatenate the invalid tensors and sampled colors tensors along the second dimension.
sampled_colors = torch.cat(sampled_colors_groups, dim=1)
if (self.color_frame_filter is not None) and (ray_info is not None):
source_frame = ray_info[..., 0].to(torch.int64)
# colors are in shape (n, nv, n_pts, c)
# we aim to collaps nv
frame_mask = self.color_frame_filter[source_frame, :]
frame_mask = frame_mask.permute(0, 2, 1).unsqueeze(-1).expand(-1, -1, -1, sampled_colors.shape[-1])
sampled_colors = torch.gather(sampled_colors, dim=1, index=frame_mask)
invalid = torch.gather(invalid, dim=1, index=frame_mask[..., :1])
nv_ = sampled_colors.shape[1]
else:
frame_mask = None
if render_flow and ray_info.shape[-1] > 1:
xy_origin = ray_info[..., 1:3].unsqueeze(1)
if frame_mask is not None:
xy = torch.gather(xy, dim=1, index=frame_mask[..., :2])
flow = xy - xy_origin
if sampled_colors.shape[-1] >= 5:
sampled_colors[..., 3:5] = flow
else:
sampled_colors = torch.cat((sampled_colors, flow), dim=-1)
return (
sampled_colors,
invalid,
) ## Return the sampled colors tensor and the invalid tensor.
def sample_extras(self, xyz, **kwargs):
if self.grid_f_extra is None:
return None
B, n_pts, _ = xyz.shape
B, n_views, c_, h_, w_ = self.grid_f_extra[
self._scale
].shape # [B, n_views, C, H, W]
xyz_projected = pts_into_camera(
xyz, self.grid_f_poses_w2c
) # [B, n_views, n_pts, 3]
distance = torch.norm(xyz_projected, dim=-2, keepdim=True)
xy, z = project_to_image(xyz_projected, self.grid_f_Ks)
invalid = outside_frustum(xy, z)
# For numerical stability with AMP. Should not affect training outcome
xy = xy.clamp(-2, 2)
sampled_extras = (
F.grid_sample(
self.grid_f_extra[self._scale].view(B * n_views, c_, h_, w_),
xy.view(B * n_views, 1, -1, 2),
mode="bilinear",
padding_mode="border",
align_corners=False,
)
.view(B, n_views, c_, n_pts)
.permute(0, 1, 3, 2)
) ## set x,y coordinates as grid feature
return sampled_extras.permute(0, 2, 1, 3)
def forward(self, xyz: torch.Tensor, **kwargs):
# context manager that helps to measure the execution time of the code block inside it. i.e. used to profile the execution time of the forward pass of the model during inference for performance analysis and optimization purposes. ## to analyze the performance of the code block, helping developers identify bottlenecks and optimize their code.
with profiler.record_function(
"model_inference"
): ## create object with the name "model_inference". ## stop the timer when exiting the block
only_density = kwargs.get("only_density", False)
ray_info = kwargs.get("ray_info", None)
render_flow = kwargs.get("render_flow", False)
predict_segmentation = kwargs.get("predict_segmentation", False)
prediction_mode = kwargs.get("prediction_mode", "stego_kmeans")
n_, n_pts, _ = xyz.shape ## n_ := Batch_size, n_pts == M
nv_ = self.grid_c_imgs.shape[1] ## 4 == (stereo 2 + side fish eye cam 2)
if self.grid_c_combine is not None:
nv_ = len(self.grid_c_combine)
(
sampled_features,
invalid_features,
) = self.sample_features(
xyz,
# use_single_featuremap=False,
)
extras = self.sample_extras(xyz)
mlp_input = sampled_features.flatten(0, 1) # (B * n_pts, n_views, C)
# Camera frustum culling stuff, currently disabled
combine_index, dim_size = None, None
kwargs = {
"invalid_features": invalid_features.flatten(
0, 1
), # (B* n_pts, n_views)
"combine_inner_dims": (n_pts,),
"combine_index": combine_index,
"dim_size": dim_size,
}
head_outputs = {
name: head(mlp_input, **{**kwargs, "head_name": name}).reshape(
n_, -1, head.d_out
)
for name, head in self.heads.items()
}
if "normal_head" in head_outputs and "dino_head" in head_outputs:
mlp_output = torch.cat([head_outputs["normal_head"], head_outputs["dino_head"]], dim=-1)
else:
mlp_output = head_outputs[self.final_pred_head]
if predict_segmentation:
sigma = mlp_output[..., :1]
sigma = F.softplus(sigma)
nv_ = 1
dino = mlp_output[..., 1:] # tanh?
invalid = None
else:
if self.sample_color:
if self.predict_dino:
sigma = mlp_output[..., :1]
sigma = F.softplus(sigma)
rgb, invalid_colors = self.sample_colors(xyz, ray_info=ray_info, render_flow=render_flow) # (n, nv_, pts, 3)
nv_ = rgb.shape[1] # RGB shape can change due to color frame filtering.
dino = mlp_output[..., 1:] # tanh?
# dino = dino / torch.linalg.norm(dino, keepdim=True)
else:
sigma = mlp_output[..., :1]
sigma = F.softplus(sigma)
rgb, invalid_colors = self.sample_colors(xyz, ray_info=ray_info, render_flow=render_flow) # (n, nv_, pts, 3)
nv_ = rgb.shape[1] # RGB shape can change due to color frame filtering.
else: ## RGB colors and invalid colors are computed directly from the mlp_output tensor. i.e. w/o calling sample_colors(xyz)
sigma = mlp_output[..., :1]
sigma = F.relu(sigma)
rgb = mlp_output[..., 1:4].reshape(n_, 1, n_pts, 3)
rgb = F.sigmoid(rgb)
invalid_colors = invalid_features.unsqueeze(-2)
nv_ = 1
"""Combine RGB colors and invalid colors"""
if not only_density:
_, _, _, c_ = rgb.shape
rgb = rgb.permute(0, 2, 1, 3).reshape(
n_, n_pts, nv_ * c_
) # (n, pts, nv * 3)
invalid_colors = invalid_colors.permute(0, 2, 1, 3).reshape(
n_, n_pts, nv_
)
invalid = (
invalid_colors | torch.all(invalid_features, dim=-1)[..., None]
)
invalid = invalid.to(rgb.dtype)
else:
rgb = torch.zeros((n_, n_pts, nv_ * 3), device=sigma.device)
invalid = invalid_features.to(sigma.dtype)
if extras is not None:
extras = F.softplus(extras)
extras = extras.permute(0, 2, 1, 3).reshape(n_, n_pts, -1)
state_dict = {
"invalid_features": invalid_features.flatten(0, 1)[None],
# TODO: figure out state dict fusion, probably collate fn
"dino_features": dino,
}
if predict_segmentation:
dino_full = self.encoder.expand_dim(dino)
if self.downstream_head is not None:
seg = self.downstream_head(dino_full, mode=prediction_mode)
seg = F.one_hot(seg, self.gt_classes) # TODO: one hot
else:
# No downstream head linked!
seg = None
return dino_full, invalid, sigma, seg
else:
return rgb, invalid, sigma, extras, state_dict