Spaces:
Sleeping
Sleeping
File size: 10,940 Bytes
4d8ad2d f4c80a2 4d8ad2d fb76561 4d8ad2d f4c80a2 67d3d7b f4c80a2 987c46e f4c80a2 987c46e f4c80a2 987c46e f4c80a2 4d8ad2d f4c80a2 e285e98 f4c80a2 4d8ad2d 987c46e f4c80a2 987c46e f4c80a2 987c46e f4c80a2 987c46e f4c80a2 4d8ad2d f4c80a2 4d8ad2d f4c80a2 4d8ad2d f4c80a2 4d8ad2d cbe5f84 4d8ad2d f4c80a2 7f0f737 f4c80a2 987c46e f4c80a2 5ec9f02 f4c80a2 987c46e f4c80a2 5ec9f02 f4c80a2 987c46e f4c80a2 987c46e f4c80a2 4d8ad2d 5ec9f02 33b7ea8 f4c80a2 987c46e f4c80a2 987c46e f4c80a2 987c46e f4c80a2 6f349df 4d8ad2d 987c46e f4c80a2 6f349df 987c46e f4c80a2 987c46e 4d8ad2d f4c80a2 fb76561 b20ddc7 4d8ad2d f4c80a2 e285e98 b20ddc7 e285e98 b20ddc7 e285e98 b20ddc7 f4c80a2 fb76561 f4c80a2 fb76561 6f349df 987c46e fb76561 4d8ad2d f4c80a2 fb76561 4d8ad2d fb76561 4d8ad2d fb76561 4d8ad2d b20ddc7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 |
import json
import random
import librosa
import numpy as np
import torch
from espnet2.bin.svs_inference import SingingGenerate
from espnet_model_zoo.downloader import ModelDownloader
from util import get_pinyin, get_tokenizer, postprocess_phn, preprocess_input
def svs_warmup(config):
"""
What: module loading, and model loading
Input: config dict/namespace (e.g., model path, cache dir, device, language, possibly speaker selection)
Return: the inference prototype function (which creates pitch/duration and runs model-specific inference)
"""
if config.model_path.startswith("espnet"):
espnet_downloader = ModelDownloader(config.cache_dir)
downloaded = espnet_downloader.download_and_unpack(config.model_path)
model = SingingGenerate(
train_config=downloaded["train_config"],
model_file=downloaded["model_file"],
device=config.device,
)
else:
raise NotImplementedError(f"Model {config.model_path} not supported")
return model
def svs_text_preprocessor(model_path, texts, lang):
"""
Input:
- model_path (str), for getting the corresponding tokenizer
- texts (str), in Chinese character or Japanese character
- lang (str), language label jp/zh, input if is not espnet model
Output:
- lyric_ls (lyric list), each element as 'k@zhe@zh'
- sybs (phn w/ _ list), each element as 'k@zh_e@zh'
- labels (phn w/o _ list), each element as 'k@zh'
"""
fs = 44100
if texts is None:
raise ValueError("texts is None when calling svs_text_preprocessor")
# preprocess
if lang == "zh":
texts = preprocess_input(texts, "")
text_list = get_pinyin(texts)
elif lang == "jp":
texts = preprocess_input(texts, "")
text_list = list(texts)
# text to phoneme
tokenizer = get_tokenizer(model_path, lang)
sybs = [] # phoneme list
for text in text_list:
if text == "AP" or text == "SP":
rev = [text]
elif text == "-" or text == "ββ":
rev = [text]
else:
rev = tokenizer(text)
if rev == False:
return (fs, np.array([0.0])), f"Error: text `{text}` is invalid!"
rev = postprocess_phn(rev, model_path, lang)
phns = "_".join(rev)
sybs.append(phns)
lyric_ls = []
labels = []
pre_phn = ""
for phns in sybs:
if phns == "-" or phns == "ββ":
phns = pre_phn
phn_list = phns.split("_")
lyric = "".join(phn_list)
for phn in phn_list:
labels.append(phn)
pre_phn = labels[-1]
lyric_ls.append(lyric)
return lyric_ls, sybs, labels
def create_batch_with_randomized_melody(lyric_ls, sybs, labels, config):
"""
Input:
- answer_text (str), in Chinese character or Japanese character
- model_path (str), loaded pretrained model name
- lang (str), language label jp/zh, input if is not espnet model
Output:
- batch (dict)
{'score': (75, [[0, 0.48057527844210024, 'n@zhi@zh', 66, 'n@zh_i@zh'],
[0.48057527844210024, 0.8049310140914353, 'k@zhe@zh', 57, 'k@zh_e@zh'],
[0.8049310140914353, 1.1905956333296641, 'm@zhei@zh', 64, 'm@zh_ei@zh']]),
'text': 'n@zh i@zh k@zh e@zh m@zh ei@zh'}
"""
tempo = 120
len_note = len(lyric_ls)
notes = []
# midi_range = (57,69)
st = 0
for id_lyric in range(len_note):
pitch = random.randint(57, 69)
period = round(random.uniform(0.1, 0.5), 4)
ed = st + period
note = [st, ed, lyric_ls[id_lyric], pitch, sybs[id_lyric]]
st = ed
notes.append(note)
phns_str = " ".join(labels)
batch = {
"score": (
int(tempo),
notes,
),
"text": phns_str,
}
return batch
def svs_inference(answer_text, svs_model, config, **kwargs):
lyric_ls, sybs, labels = svs_text_preprocessor(
config.model_path, answer_text, config.lang
)
if config.melody_source.startswith("random_generate"):
batch = create_batch_with_randomized_melody(lyric_ls, sybs, labels, config)
elif config.melody_source.startswith("random_select"):
segment_iterator = song_segment_iterator(kwargs["song_db"], kwargs["metadata"])
batch = align_score_and_text(segment_iterator, lyric_ls, sybs, labels, config)
else:
raise NotImplementedError(f"melody source {config.melody_source} not supported")
if config.model_path == "espnet/aceopencpop_svs_visinger2_40singer_pretrain":
sid = np.array([int(config.speaker)])
output_dict = svs_model(batch, sids=sid)
elif config.model_path == "espnet/mixdata_svs_visinger2_spkembed_lang_pretrained":
langs = {
"zh": 2,
"jp": 1,
"en": 2,
}
lid = np.array([langs[config.lang]])
spk_embed = np.load(config.speaker)
output_dict = svs_model(batch, lids=lid, spembs=spk_embed)
else:
raise NotImplementedError(f"Model {config.model_path} not supported")
wav_info = output_dict["wav"].cpu().numpy()
return wav_info
def singmos_warmup():
predictor = torch.hub.load(
"South-Twilight/SingMOS:v0.2.0", "singing_ssl_mos", trust_repo=True
)
return predictor, "South-Twilight/SingMOS:v0.2.0"
def singmos_evaluation(predictor, wav_info, fs):
wav_mos = librosa.resample(wav_info, orig_sr=fs, target_sr=16000)
wav_mos = torch.from_numpy(wav_mos).unsqueeze(0)
len_mos = torch.tensor([wav_mos.shape[1]])
score = predictor(wav_mos, len_mos)
return score
def estimate_sentence_length(query, config, song2note_lengths):
if config.melody_source.startswith("random_select"):
song_name = random.choice(list(song2note_lengths.keys()))
phrase_length = song2note_lengths[song_name]
metadata = {"song_name": song_name}
return phrase_length, metadata
else:
raise NotImplementedError(f"melody source {config.melody_source} not supported")
def align_score_and_text(segment_iterator, lyric_ls, sybs, labels, config):
text = []
lyric_idx = 0
notes_info = []
while lyric_idx < len(lyric_ls):
score = next(segment_iterator)
for note_start_time, note_end_time, reference_note_lyric, note_midi in zip(
score["note_start_times"],
score["note_end_times"],
score["note_lyrics"],
score["note_midi"],
):
if reference_note_lyric in ["<AP>", "<SP>"]:
notes_info.append(
[
note_start_time,
note_end_time,
reference_note_lyric.strip("<>"),
note_midi,
reference_note_lyric.strip("<>"),
]
)
text.append(reference_note_lyric.strip("<>"))
elif (
reference_note_lyric in ["-", "ββ"]
and config.melody_source == "random_select.take_lyric_continuation"
):
notes_info.append(
[
note_start_time,
note_end_time,
reference_note_lyric,
note_midi,
text[-1],
]
)
text.append(text[-1])
else:
notes_info.append(
[
note_start_time,
note_end_time,
lyric_ls[lyric_idx],
note_midi,
sybs[lyric_idx],
]
)
text += sybs[lyric_idx].split("_")
lyric_idx += 1
if lyric_idx >= len(lyric_ls):
break
batch = {
"score": (
score["tempo"], # Assume the tempo is the same for all segments
notes_info,
),
"text": " ".join(text),
}
return batch
def song_segment_iterator(song_db, metadata):
song_name = metadata["song_name"]
if song_name.startswith("kising_"):
# return a iterator that load from song_name_{001} and increment
segment_id = 1
while f"{song_name}_{segment_id:03d}" in song_db.index:
yield song_db.loc[f"{song_name}_{segment_id:03d}"]
segment_id += 1
else:
raise NotImplementedError(f"song name {song_name} not supported")
def load_song_database(config):
from datasets import load_dataset
song_db = load_dataset(
"jhansss/kising_score_segments", cache_dir="cache", split="train"
).to_pandas()
song_db.set_index("segment_id", inplace=True)
if ".take_lyric_continuation" in config.melody_source:
with open("data/song2word_lengths.json", "r") as f:
song2note_lengths = json.load(f)
else:
with open("data/song2note_lengths.json", "r") as f:
song2note_lengths = json.load(f)
return song2note_lengths, song_db
if __name__ == "__main__":
import argparse
import soundfile as sf
# -------- demo code for generate audio from randomly selected song ---------#
config = argparse.Namespace(
model_path="espnet/mixdata_svs_visinger2_spkembed_lang_pretrained",
cache_dir="cache",
device="cuda", # "cpu"
melody_source="random_generate", # "random_select.take_lyric_continuation"
lang="jp",
speaker="resource/singer/singer_embedding_ace-2.npy",
)
# load model
model = svs_warmup(config)
if config.lang == "zh":
answer_text = "倩ζ°ηε₯½\nη©Ίζ°ζΈ
ζ°\nζ°ζΈ©ζΈ©ε\nι£εζ₯δΈ½\n倩ι«ζ°η½\nι³ε
ζεͺ"
elif config.lang == "jp":
answer_text = "γγγγ§γγ‘γ°γγγ²γγγΎ\nγγγγγγ€γγ\nγγγγγ¦γγ"
else:
print(f"Currently system does not support {config.lang}")
exit(1)
sample_rate = 44100
if config.melody_source.startswith("random_select"):
# load song database: jhansss/kising_score_segments
song2note_lengths, song_db = load_song_database(config)
# get song_name and phrase_length
phrase_length, metadata = estimate_sentence_length(
None, config, song2note_lengths
)
# then, phrase_length info should be added to llm prompt, and get the answer lyrics from llm
additional_kwargs = {"song_db": song_db, "metadata": metadata}
else:
additional_kwargs = {}
wav_info = svs_inference(answer_text, model, config, **additional_kwargs)
# write wav to output_retrieved.wav
save_name = config.melody_source
sf.write(f"{save_name}_{config.lang}.wav", wav_info, samplerate=sample_rate)
|