File size: 14,337 Bytes
4d8ad2d
 
 
f4c80a2
4d8ad2d
 
fb76561
4d8ad2d
f4c80a2
ca2d805
d191039
ca2d805
 
 
d191039
f4c80a2
 
 
 
 
 
 
 
67d3d7b
 
f4c80a2
 
 
987c46e
f4c80a2
017498a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4c80a2
 
 
 
 
d191039
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca2d805
d191039
 
ca2d805
d191039
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4c80a2
987c46e
 
f4c80a2
 
 
 
 
 
 
 
 
987c46e
f4c80a2
 
 
4d8ad2d
f4c80a2
 
 
 
 
 
d191039
 
 
f4c80a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d8ad2d
987c46e
 
f4c80a2
 
 
 
987c46e
f4c80a2
987c46e
 
 
f4c80a2
987c46e
f4c80a2
 
 
4d8ad2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4c80a2
 
 
4d8ad2d
 
 
 
 
 
 
 
 
f4c80a2
4d8ad2d
f4c80a2
4d8ad2d
cbe5f84
4d8ad2d
025d5b1
4d8ad2d
 
 
 
 
 
 
 
 
 
 
f4c80a2
 
 
 
ca2d805
 
 
 
 
5ec9f02
f4c80a2
 
 
 
 
987c46e
f4c80a2
 
5ec9f02
f4c80a2
 
 
 
 
987c46e
 
 
 
 
 
f4c80a2
987c46e
 
 
 
 
 
 
 
 
f4c80a2
4d8ad2d
 
 
 
5ec9f02
 
 
 
 
 
 
 
 
33b7ea8
f4c80a2
987c46e
 
 
 
 
 
 
 
 
f4c80a2
 
 
 
 
 
987c46e
 
f4c80a2
987c46e
f4c80a2
 
 
 
ca2d805
 
 
 
 
 
e3a6e38
 
ca2d805
 
 
 
 
 
 
 
 
 
 
f4c80a2
 
 
 
 
 
 
 
ca2d805
 
 
e3a6e38
 
f4c80a2
 
 
 
6f349df
4d8ad2d
 
987c46e
 
 
f4c80a2
6f349df
 
 
 
 
 
987c46e
 
f4c80a2
987c46e
4d8ad2d
 
f4c80a2
 
 
025d5b1
f4c80a2
fb76561
ca2d805
e3a6e38
4d8ad2d
f4c80a2
 
 
 
 
e285e98
b20ddc7
e285e98
e3a6e38
b20ddc7
e285e98
b20ddc7
f4c80a2
fb76561
f4c80a2
fb76561
 
6f349df
987c46e
fb76561
4d8ad2d
 
 
f4c80a2
fb76561
4d8ad2d
 
 
fb76561
4d8ad2d
fb76561
 
4d8ad2d
b20ddc7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
import json
import random

import numpy as np
from espnet2.bin.svs_inference import SingingGenerate
from espnet_model_zoo.downloader import ModelDownloader

from util import get_pinyin, get_tokenizer, postprocess_phn, preprocess_input

from kanjiconv import KanjiConv
import unicodedata


kanji_to_kana = KanjiConv()


def svs_warmup(config):
    """
    What: module loading, and model loading
    Input: config dict/namespace (e.g., model path, cache dir, device, language, possibly speaker selection)
    Return: the inference prototype function (which creates pitch/duration and runs model-specific inference)
    """
    if config.model_path.startswith("espnet"):
        espnet_downloader = ModelDownloader(config.cache_dir)
        downloaded = espnet_downloader.download_and_unpack(config.model_path)
        model = SingingGenerate(
            train_config=downloaded["train_config"],
            model_file=downloaded["model_file"],
            device=config.device,
        )
        dummy_batch = {
            "score": (
                75,  # tempo
                [
                    (0.0, 0.25, "r_en", 63.0, "r_en"),
                    (0.25, 0.5, "โ€”", 63.0, "en"),
                ],
            ),
            "text": "r en en",
        }
        model(
            dummy_batch,
            lids=np.array([2]),
            spembs=np.load("resource/singer/singer_embedding_ace-2.npy"),
        )  # warmup
    else:
        raise NotImplementedError(f"Model {config.model_path} not supported")
    return model


yoon_map = {
    "ใ": "ใ‚", "ใƒ": "ใ„", "ใ…": "ใ†", "ใ‡": "ใˆ", "ใ‰": "ใŠ",
    "ใ‚ƒ": "ใ‚„", "ใ‚…": "ใ‚†", "ใ‚‡": "ใ‚ˆ", "ใ‚Ž": "ใ‚"
}

def replace_chouonpu(hiragana_text):
    """ processใ€Œใƒผใ€since the previous packages didn't support """
    vowels = {
        "ใ‚": "ใ‚", "ใ„": "ใ„", "ใ†": "ใ†", "ใˆ": "ใˆ", "ใŠ": "ใ†",
        "ใ‹": "ใ‚", "ใ": "ใ„", "ใ": "ใ†", "ใ‘": "ใˆ", "ใ“": "ใ†",
        "ใ•": "ใ‚", "ใ—": "ใ„", "ใ™": "ใ†", "ใ›": "ใˆ", "ใ": "ใ†",
        "ใŸ": "ใ‚", "ใก": "ใ„", "ใค": "ใ†", "ใฆ": "ใˆ", "ใจ": "ใ†",
        "ใช": "ใ‚", "ใซ": "ใ„", "ใฌ": "ใ†", "ใญ": "ใˆ", "ใฎ": "ใ†",
        "ใฏ": "ใ‚", "ใฒ": "ใ„", "ใต": "ใ†", "ใธ": "ใˆ", "ใป": "ใ†",
        "ใพ": "ใ‚", "ใฟ": "ใ„", "ใ‚€": "ใ†", "ใ‚": "ใˆ", "ใ‚‚": "ใ†",
        "ใ‚„": "ใ‚", "ใ‚†": "ใ†", "ใ‚ˆ": "ใ†",
        "ใ‚‰": "ใ‚", "ใ‚Š": "ใ„", "ใ‚‹": "ใ†", "ใ‚Œ": "ใˆ", "ใ‚": "ใ†",
        "ใ‚": "ใ‚", "ใ‚’": "ใ†",
    }

    new_text = []
    for i, char in enumerate(hiragana_text):
        if char == "ใƒผ" and i > 0:
            prev_char = new_text[-1]
            if prev_char in yoon_map:
                prev_char = yoon_map[prev_char] 
            new_text.append(vowels.get(prev_char, prev_char)) 
        else:
            new_text.append(char) 
    return "".join(new_text)


def is_small_kana(kana): # ใ‚‡ True ใ‚ˆ False
    for char in kana:
        name = unicodedata.name(char, "")
        if "SMALL" in name:
            return True  
    return False 


def kanji_to_SVSDictKana(text):
    hiragana_text = kanji_to_kana.to_hiragana(text.replace(" ", ""))

    hiragana_text_wl = replace_chouonpu(hiragana_text).split(" ") # list
    # print(f'debug -- hiragana_text {hiragana_text_wl}') 

    final_ls = []
    for subword in hiragana_text_wl:
        sl_prev = 0
        for i in range(len(subword)-1):
            if sl_prev>=len(subword)-1:
                break
            sl = sl_prev + 1
            if subword[sl] in yoon_map:
                final_ls.append(subword[sl_prev:sl+1])
                sl_prev+=2
            else:
                final_ls.append(subword[sl_prev])
                sl_prev+=1
        final_ls.append(subword[sl_prev])

    # final_str = " ".join(final_ls)
    return final_ls


def svs_text_preprocessor(model_path, texts, lang):
    """
    Input:
        - model_path (str), for getting the corresponding tokenizer
        - texts (str), in Chinese character or Japanese character
        - lang (str), language label jp/zh, input if is not espnet model

    Output:
        - lyric_ls (lyric list), each element as 'k@zhe@zh'
        - sybs (phn w/ _ list), each element as 'k@zh_e@zh'
        - labels (phn w/o _ list), each element as 'k@zh'

    """
    fs = 44100

    if texts is None:
        raise ValueError("texts is None when calling svs_text_preprocessor")

    # preprocess
    if lang == "zh":
        texts = preprocess_input(texts, "")
        text_list = get_pinyin(texts)
    elif lang == "jp":
        text_list = kanji_to_SVSDictKana(texts)
        # texts = preprocess_input(texts, "")
        # text_list = list(texts)

    # text to phoneme
    tokenizer = get_tokenizer(model_path, lang)
    sybs = []  # phoneme list
    for text in text_list:
        if text == "AP" or text == "SP":
            rev = [text]
        elif text == "-" or text == "โ€”โ€”":
            rev = [text]
        else:
            rev = tokenizer(text)
        if rev == False:
            return (fs, np.array([0.0])), f"Error: text `{text}` is invalid!"
        rev = postprocess_phn(rev, model_path, lang)
        phns = "_".join(rev)
        sybs.append(phns)

    lyric_ls = []
    labels = []
    pre_phn = ""
    for phns in sybs:
        if phns == "-" or phns == "โ€”โ€”":
            phns = pre_phn

        phn_list = phns.split("_")
        lyric = "".join(phn_list)
        for phn in phn_list:
            labels.append(phn)
        pre_phn = labels[-1]
        lyric_ls.append(lyric)

    return lyric_ls, sybs, labels


def create_batch_with_randomized_melody(lyric_ls, sybs, labels, config):
    """
    Input:
        - answer_text (str), in Chinese character or Japanese character
        - model_path (str), loaded pretrained model name
        - lang (str), language label jp/zh, input if is not espnet model
    Output:
        - batch (dict)

    {'score': (75, [[0, 0.48057527844210024, 'n@zhi@zh', 66, 'n@zh_i@zh'],
            [0.48057527844210024, 0.8049310140914353, 'k@zhe@zh', 57, 'k@zh_e@zh'],
            [0.8049310140914353, 1.1905956333296641, 'm@zhei@zh', 64, 'm@zh_ei@zh']]),
     'text': 'n@zh i@zh k@zh e@zh m@zh ei@zh'}
    """
    tempo = 120
    len_note = len(lyric_ls)
    notes = []
    # midi_range = (57,69)
    st = 0
    for id_lyric in range(len_note):
        pitch = random.randint(57, 69)
        period = round(random.uniform(0.1, 0.5), 4)
        ed = st + period
        note = [st, ed, lyric_ls[id_lyric], pitch, sybs[id_lyric]]
        st = ed
        notes.append(note)
    phns_str = " ".join(labels)
    batch = {
        "score": (
            int(tempo),
            notes,
        ),
        "text": phns_str,
    }
    return batch


def svs_inference(answer_text, svs_model, config, **kwargs):
    lyric_ls, sybs, labels = svs_text_preprocessor(
        config.model_path, answer_text, config.lang
    )
    if config.melody_source.startswith("random_generate"):
        batch = create_batch_with_randomized_melody(lyric_ls, sybs, labels, config)
    elif config.melody_source.startswith("random_select"):
        segment_iterator = song_segment_iterator(kwargs["song_db"], kwargs["metadata"])
        batch = align_score_and_text(segment_iterator, lyric_ls, sybs, labels, config)
    else:
        raise NotImplementedError(f"melody source {config.melody_source} not supported")

    if config.model_path == "espnet/aceopencpop_svs_visinger2_40singer_pretrain":
        sid = np.array([int(config.speaker)])
        output_dict = svs_model(batch, sids=sid)
    elif config.model_path == "espnet/mixdata_svs_visinger2_spkemb_lang_pretrained":
        langs = {
            "zh": 2,
            "jp": 1,
            "en": 2,
        }
        lid = np.array([langs[config.lang]])
        spk_embed = np.load(config.speaker)
        output_dict = svs_model(batch, lids=lid, spembs=spk_embed)
    else:
        raise NotImplementedError(f"Model {config.model_path} not supported")
    wav_info = output_dict["wav"].cpu().numpy()
    return wav_info


def estimate_sentence_length(query, config, song2note_lengths):
    if config.melody_source == "random_select.touhou":
        song_name = "touhou"
        phrase_length = None
        metadata = {"song_name": song_name}
        return phrase_length, metadata
    if config.melody_source.startswith("random_select"):
        song_name = random.choice(list(song2note_lengths.keys()))
        phrase_length = song2note_lengths[song_name]
        metadata = {"song_name": song_name}
        return phrase_length, metadata
    else:
        raise NotImplementedError(f"melody source {config.melody_source} not supported")


def align_score_and_text(segment_iterator, lyric_ls, sybs, labels, config):
    text = []
    lyric_idx = 0
    notes_info = []
    while lyric_idx < len(lyric_ls):
        score = next(segment_iterator)
        for note_start_time, note_end_time, reference_note_lyric, note_midi in zip(
            score["note_start_times"],
            score["note_end_times"],
            score["note_lyrics"],
            score["note_midi"],
        ):
            if reference_note_lyric in ["<AP>", "<SP>"]:
                notes_info.append(
                    [
                        note_start_time,
                        note_end_time,
                        reference_note_lyric.strip("<>"),
                        note_midi,
                        reference_note_lyric.strip("<>"),
                    ]
                )
                text.append(reference_note_lyric.strip("<>"))
            elif (
                reference_note_lyric in ["-", "โ€”โ€”"]
                and config.melody_source == "random_select.take_lyric_continuation"
            ):
                notes_info.append(
                    [
                        note_start_time,
                        note_end_time,
                        reference_note_lyric,
                        note_midi,
                        text[-1],
                    ]
                )
                text.append(text[-1])
            else:
                notes_info.append(
                    [
                        note_start_time,
                        note_end_time,
                        lyric_ls[lyric_idx],
                        note_midi,
                        sybs[lyric_idx],
                    ]
                )
                text += sybs[lyric_idx].split("_")
                lyric_idx += 1
                if lyric_idx >= len(lyric_ls):
                    break
    batch = {
        "score": (
            score["tempo"],  # Assume the tempo is the same for all segments
            notes_info,
        ),
        "text": " ".join(text),
    }
    return batch


def load_list_from_json(json_path):
    with open(json_path, 'r', encoding='utf-8') as f:
        data = json.load(f)
    data = [
        {
            "tempo": d["tempo"],
            "note_start_times": [n[0] * (100/d["tempo"]) for n in d["score"]],
            "note_end_times": [n[1] * (100/d["tempo"]) for n in d["score"]],
            "note_lyrics": ["" for n in d["score"]],
            "note_midi": [n[2] for n in d["score"]],
        }
        for d in data
    ]
    if isinstance(data, list):
        return data
    else:
        raise ValueError("The contents of the json is not list.")


def song_segment_iterator(song_db, metadata):
    song_name = metadata["song_name"]
    if song_name.startswith("kising_"):
        # return a iterator that load from song_name_{001} and increment
        segment_id = 1
        while f"{song_name}_{segment_id:03d}" in song_db.index:
            yield song_db.loc[f"{song_name}_{segment_id:03d}"]
            segment_id += 1
    elif song_name.startswith("touhou"):
        # return a iterator that load from touhou musics
        data = load_list_from_json("data/touhou/note_data.json")
        while True:
            yield random.choice(data)
    else:
        raise NotImplementedError(f"song name {song_name} not supported")


def load_song_database(config):
    from datasets import load_dataset

    song_db = load_dataset(
        "jhansss/kising_score_segments", cache_dir="cache", split="train"
    ).to_pandas()
    song_db.set_index("segment_id", inplace=True)
    if ".take_lyric_continuation" in config.melody_source:
        with open("data/song2word_lengths.json", "r") as f:
            song2note_lengths = json.load(f)
    else:
        with open("data/song2note_lengths.json", "r") as f:
            song2note_lengths = json.load(f)
    return song2note_lengths, song_db


if __name__ == "__main__":
    import argparse
    import soundfile as sf

    # -------- demo code for generate audio from randomly selected song ---------#
    config = argparse.Namespace(
        model_path="espnet/mixdata_svs_visinger2_spkemb_lang_pretrained",
        cache_dir="cache",
        device="cuda", # "cpu"
        melody_source="random_select.touhou", #"random_generate" "random_select.take_lyric_continuation",  "random_select.touhou"
        lang="zh",
        speaker="resource/singer/singer_embedding_ace-2.npy",
    )

    # load model
    model = svs_warmup(config)

    if config.lang == "zh":
        answer_text = "ๅคฉๆฐ”็œŸๅฅฝ\n็ฉบๆฐ”ๆธ…ๆ–ฐ\nๆฐ”ๆธฉๆธฉๅ’Œ\n้ฃŽๅ’Œๆ—ฅไธฝ\nๅคฉ้ซ˜ๆฐ”็ˆฝ\n้˜ณๅ…‰ๆ˜Žๅชš"
    elif config.lang == "jp":
        answer_text = "ๆตใ‚Œใฆใๆ™‚ใฎไธญใงใงใ‚‚ใ‘ใ ใ‚‹ใ•ใŒ"
    else:
        print(f"Currently system does not support {config.lang}")
        exit(1)

    sample_rate = 44100

    if config.melody_source.startswith("random_select"):
        # load song database: jhansss/kising_score_segments
        song2note_lengths, song_db = load_song_database(config)

        # get song_name and phrase_length
        phrase_length, metadata = estimate_sentence_length(
            None, config, song2note_lengths
        )

        # then, phrase_length info should be added to llm prompt, and get the answer lyrics from llm
        additional_kwargs = {"song_db": song_db, "metadata": metadata}
    else:
        additional_kwargs = {}

    wav_info = svs_inference(answer_text, model, config, **additional_kwargs)

    # write wav to output_retrieved.wav
    save_name = config.melody_source
    sf.write(f"{save_name}_{config.lang}.wav", wav_info, samplerate=sample_rate)