Spaces:
Sleeping
Sleeping
from util import ( | |
preprocess_input, | |
postprocess_phn, | |
get_tokenizer, | |
get_pinyin, | |
) | |
from espnet_model_zoo.downloader import ModelDownloader | |
from espnet2.bin.svs_inference import SingingGenerate | |
import librosa | |
import torch | |
import numpy as np | |
import random | |
import json | |
import argparse | |
import soundfile as sf | |
# the code below should be in app.py than svs_utils.py | |
# espnet_model_dict = { | |
# "Model①(Chinese)-zh": "espnet/aceopencpop_svs_visinger2_40singer_pretrain", | |
# "Model②(Multilingual)-zh": "espnet/mixdata_svs_visinger2_spkembed_lang_pretrained", | |
# "Model②(Multilingual)-jp": "espnet/mixdata_svs_visinger2_spkembed_lang_pretrained", | |
# } | |
singer_embeddings = { | |
"espnet/aceopencpop_svs_visinger2_40singer_pretrain": { | |
"singer1 (male)": 1, | |
"singer2 (female)": 12, | |
"singer3 (male)": 23, | |
"singer4 (female)": 29, | |
"singer5 (male)": 18, | |
"singer6 (female)": 8, | |
"singer7 (male)": 25, | |
"singer8 (female)": 5, | |
"singer9 (male)": 10, | |
"singer10 (female)": 15, | |
}, | |
"espnet/mixdata_svs_visinger2_spkembed_lang_pretrained": { | |
"singer1 (male)": "resource/singer/singer_embedding_ace-1.npy", | |
"singer2 (female)": "resource/singer/singer_embedding_ace-2.npy", | |
"singer3 (male)": "resource/singer/singer_embedding_ace-3.npy", | |
"singer4 (female)": "resource/singer/singer_embedding_ace-8.npy", | |
"singer5 (male)": "resource/singer/singer_embedding_ace-7.npy", | |
"singer6 (female)": "resource/singer/singer_embedding_itako.npy", | |
"singer7 (male)": "resource/singer/singer_embedding_ofuton.npy", | |
"singer8 (female)": "resource/singer/singer_embedding_kising_orange.npy", | |
"singer9 (male)": "resource/singer/singer_embedding_m4singer_Tenor-1.npy", | |
"singer10 (female)": "resource/singer/singer_embedding_m4singer_Alto-4.npy", | |
}, | |
} | |
def svs_warmup(config): | |
""" | |
What: module loading, and model loading | |
Input: config dict/namespace (e.g., model path, cache dir, device, language, possibly speaker selection) | |
Return: the inference prototype function (which creates pitch/duration and runs model-specific inference) | |
""" | |
if config.model_path.startswith("espnet"): | |
espnet_downloader = ModelDownloader(config.cache_dir) | |
downloaded = espnet_downloader.download_and_unpack(config.model_path) | |
model = SingingGenerate( | |
train_config=downloaded["train_config"], | |
model_file=downloaded["model_file"], | |
device=config.device, | |
) | |
else: | |
raise NotImplementedError(f"Model {config.model_path} not supported") | |
return model | |
def svs_text_preprocessor(model_path, texts, lang): | |
""" | |
Input: | |
- model_path (str), for getting the corresponding tokenizer | |
- texts (str), in Chinese character or Japanese character | |
- lang (str), language label jp/zh, input if is not espnet model | |
Output: | |
- lyric_ls (lyric list), each element as 'k@zhe@zh' | |
- sybs (phn w/ _ list), each element as 'k@zh_e@zh' | |
- labels (phn w/o _ list), each element as 'k@zh' | |
""" | |
fs = 44100 | |
if texts is None: | |
return (fs, np.array([0.0])), "Error: No Text provided!" | |
# preprocess | |
if lang == "zh": | |
texts = preprocess_input(texts, "") | |
text_list = get_pinyin(texts) | |
elif lang == "jp": | |
texts = preprocess_input(texts, " ") | |
text_list = texts.strip().split() | |
# text to phoneme | |
tokenizer = get_tokenizer(model_path, lang) | |
sybs = [] # phoneme list | |
for text in text_list: | |
if text == "AP" or text == "SP": | |
rev = [text] | |
elif text == "-" or text == "——": | |
rev = [text] | |
else: | |
rev = tokenizer(text) | |
if rev == False: | |
return (fs, np.array([0.0])), f"Error: text `{text}` is invalid!" | |
rev = postprocess_phn(rev, model_path, lang) | |
phns = "_".join(rev) | |
sybs.append(phns) | |
lyric_ls = [] | |
labels = [] | |
pre_phn = "" | |
for phns in sybs: | |
if phns == "-" or phns == "——": | |
phns = pre_phn | |
phn_list = phns.split("_") | |
lyric = "".join(phn_list) | |
for phn in phn_list: | |
labels.append(phn) | |
pre_phn = labels[-1] | |
lyric_ls.append(lyric) | |
return lyric_ls, sybs, labels | |
def svs_get_batch(model_path, answer_text, lang, random_gen=True): | |
""" | |
Input: | |
- answer_text (str), in Chinese character or Japanese character | |
- model_path (str), loaded pretrained model name | |
- lang (str), language label jp/zh, input if is not espnet model | |
Output: | |
- batch (dict) | |
{'score': (75, [[0, 0.48057527844210024, 'n@zhi@zh', 66, 'n@zh_i@zh'], | |
[0.48057527844210024, 0.8049310140914353, 'k@zhe@zh', 57, 'k@zh_e@zh'], | |
[0.8049310140914353, 1.1905956333296641, 'm@zhei@zh', 64, 'm@zh_ei@zh']]), | |
'text': 'n@zh i@zh k@zh e@zh m@zh ei@zh'} | |
""" | |
tempo = 120 | |
lyric_ls, sybs, labels = svs_text_preprocessor(model_path, answer_text, lang) | |
len_note = len(lyric_ls) | |
notes = [] | |
if random_gen: | |
# midi_range = (57,69) | |
st = 0 | |
for id_lyric in range(len_note): | |
pitch = random.randint(57, 69) | |
period = round(random.uniform(0.1, 0.5), 4) | |
ed = st + period | |
note = [st, ed, lyric_ls[id_lyric], pitch, sybs[id_lyric]] | |
st = ed | |
notes.append(note) | |
phns_str = " ".join(labels) | |
batch = { | |
"score": ( | |
int(tempo), | |
notes, | |
), | |
"text": phns_str, | |
} | |
# print(batch) | |
return batch | |
langs = { | |
"zh": 2, | |
"jp": 1, | |
"en": 2, | |
} | |
exist_model = "Null" | |
svs = None | |
def svs_inference(model_name, model_svs, answer_text, lang, random_gen=True, fs=44100): | |
batch = svs_get_batch(model_name, answer_text, lang, random_gen=random_gen) | |
# Infer | |
spk = "singer1 (male)" | |
global exist_model | |
global svs | |
svs = model_svs | |
exist_model = model_name | |
# if exist_model == "Null" or exist_model != model_name: | |
# # device = "cpu" | |
# device = "cuda" if torch.cuda.is_available() else "cpu" | |
# d = ModelDownloader(cachedir="./cache") | |
# pretrain_downloaded = d.download_and_unpack(model_name) | |
# svs = SingingGenerate( | |
# train_config = pretrain_downloaded["train_config"], | |
# model_file = pretrain_downloaded["model_file"], | |
# device = device | |
# ) | |
# exist_model = model_name | |
if model_name == "Model①(Chinese)-zh": | |
sid = np.array([singer_embeddings[model_name][spk]]) | |
output_dict = svs(batch, sids=sid) | |
else: | |
lid = np.array([langs[lang]]) | |
spk_embed = np.load("resource/singer/singer_embedding_ace-2.npy") | |
output_dict = svs(batch, lids=lid, spembs=spk_embed) | |
wav_info = output_dict["wav"].cpu().numpy() | |
return wav_info | |
def singmos_warmup(): | |
predictor = torch.hub.load( | |
"South-Twilight/SingMOS:v0.2.0", "singing_ssl_mos", trust_repo=True | |
) | |
return predictor, "South-Twilight/SingMOS:v0.2.0" | |
def singmos_evaluation(predictor, wav_info, fs): | |
wav_mos = librosa.resample(wav_info, orig_sr=fs, target_sr=16000) | |
wav_mos = torch.from_numpy(wav_mos).unsqueeze(0) | |
len_mos = torch.tensor([wav_mos.shape[1]]) | |
score = predictor(wav_mos, len_mos) | |
return score | |
def estimate_sentence_length(query, config, song2note_lengths): | |
if config.melody_source.startswith("random_select"): | |
# random select a song from database, and return its value in the phrase_length column | |
# return phrase_length column and song name | |
song_name = random.choice(list(song2note_lengths.keys())) | |
phrase_length = song2note_lengths[song_name] | |
metadata = {"song_name": song_name} | |
return phrase_length, metadata | |
else: | |
raise NotImplementedError(f"melody source {config.melody_source} not supported") | |
def align_score_and_text(segment_iterator, lyric_ls, sybs, labels, config): | |
text = [] | |
lyric_idx = 0 | |
notes_info = [] | |
while lyric_idx < len(lyric_ls): | |
score = next(segment_iterator) | |
for note_start_time, note_end_time, reference_note_lyric, note_midi in zip( | |
score["note_start_times"], | |
score["note_end_times"], | |
score["note_lyrics"], | |
score["note_midi"], | |
): | |
if reference_note_lyric in ["<AP>", "<SP>"]: | |
notes_info.append( | |
[ | |
note_start_time, | |
note_end_time, | |
reference_note_lyric.strip("<>"), | |
note_midi, | |
reference_note_lyric.strip("<>"), | |
] | |
) | |
text.append(reference_note_lyric.strip("<>")) | |
elif reference_note_lyric in ["-", "——"] and config.melody_source == "random_select.take_lyric_continuation": | |
notes_info.append( | |
[ | |
note_start_time, | |
note_end_time, | |
reference_note_lyric, | |
note_midi, | |
text[-1], | |
] | |
) | |
text.append(text[-1]) | |
else: | |
notes_info.append( | |
[ | |
note_start_time, | |
note_end_time, | |
lyric_ls[lyric_idx], | |
note_midi, | |
sybs[lyric_idx], | |
] | |
) | |
text += sybs[lyric_idx].split("_") | |
lyric_idx += 1 | |
if lyric_idx >= len(lyric_ls): | |
break | |
batch = { | |
"score": ( | |
score["tempo"], # Assume the tempo is the same for all segments | |
notes_info, | |
), | |
"text": " ".join(text), | |
} | |
return batch | |
def song_segment_iterator(song_db, metadata): | |
song_name = metadata["song_name"] | |
if song_name.startswith("kising_"): | |
# return a iterator that load from song_name_{001} and increment | |
segment_id = 1 | |
while f"{song_name}_{segment_id:03d}" in song_db.index: | |
yield song_db.loc[f"{song_name}_{segment_id:03d}"] | |
segment_id += 1 | |
else: | |
raise NotImplementedError(f"song name {song_name} not supported") | |
def load_song_database(config): | |
song_db = load_dataset( | |
"jhansss/kising_score_segments", cache_dir="cache", split="train" | |
).to_pandas() | |
song_db.set_index("segment_id", inplace=True) | |
if ".take_lyric_continuation" in config.melody_source: | |
with open("data/song2word_lengths.json", "r") as f: | |
song2note_lengths = json.load(f) | |
else: | |
with open("data/song2note_lengths.json", "r") as f: | |
song2note_lengths = json.load(f) | |
return song2note_lengths, song_db | |
if __name__ == "__main__": | |
# -------- demo code for generate audio from randomly selected song ---------# | |
config = argparse.Namespace( | |
model_path="espnet/mixdata_svs_visinger2_spkembed_lang_pretrained", | |
cache_dir="cache", | |
device="cuda", # "cpu" | |
melody_source="random_generate", # "random_select.take_lyric_continuation" | |
lang="zh", | |
) | |
# load model | |
model = svs_warmup(config) | |
answer_text = "天气真好\n空气清新\n气温温和\n风和日丽\n天高气爽\n阳光明媚" | |
sample_rate = 44100 | |
if config.melody_source.startswith("random_select"): | |
# load song database: jhansss/kising_score_segments | |
from datasets import load_dataset | |
song2note_lengths, song_db = load_song_database(config) | |
# get song_name and phrase_length | |
phrase_length, metadata = estimate_sentence_length(None, config, song2note_lengths) | |
# then, phrase_length info should be added to llm prompt, and get the answer lyrics from llm | |
# e.g. answer_text = "天气真好\n空气清新" | |
lyric_ls, sybs, labels = svs_text_preprocessor( | |
config.model_path, answer_text, config.lang | |
) | |
segment_iterator = song_segment_iterator(song_db, metadata) | |
batch = align_score_and_text(segment_iterator, lyric_ls, sybs, labels, config) | |
singer_embedding = np.load(singer_embeddings[config.model_path]["singer2 (female)"]) | |
lid = np.array([langs[config.lang]]) | |
output_dict = model(batch, lids=lid, spembs=singer_embedding) | |
wav_info = output_dict["wav"].cpu().numpy() | |
elif config.melody_source.startswith("random_generate"): | |
wav_info = svs_inference(config.model_path, model, answer_text, lang=config.lang, random_gen=True, fs=sample_rate) | |
# write wav to output_retrieved.wav | |
save_name = config.melody_source.split('.')[0] | |
sf.write(f"{save_name}.wav", wav_info, samplerate=sample_rate) | |