Spaces:
Sleeping
Sleeping
File size: 23,542 Bytes
965ab8e 76fe51c 965ab8e 76fe51c 965ab8e 76fe51c 965ab8e 330ef66 965ab8e 330ef66 965ab8e 21f534d 965ab8e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 |
import streamlit as st
import torch
import torchvision.models as models
import torchvision.transforms as T
from PIL import Image, ImageDraw
import numpy as np
import cv2 # OpenCV for video processing
import os
import sys
import time
import tempfile
from torchvision.ops import nms
# Imports for manual model loading
from omegaconf import OmegaConf
from hydra.utils import instantiate
# Need _load_checkpoint from the local sam2 copy
from sam2.build_sam import _load_checkpoint
from sam2 import automatic_mask_generator
# --- Configuration ---
# Assuming paths relative to the app file location
_APP_DIR = os.path.dirname(os.path.abspath(__file__))
SAM_CHECKPOINT_PATH = os.path.join(_APP_DIR, "checkpoints", "sam2.1_hiera_large.pt")
SAM_MODEL_CONFIG_PATH = os.path.join(_APP_DIR, "sam2", "configs", "sam2.1", "sam2.1_hiera_l.yaml")
CLASSIFICATION_MODEL_PATH = os.path.join(_APP_DIR, "models", "best_mobilenet_v3_small.pth")
NUM_CLASSES = 2
CLASS_NAMES = ['Not Infected', 'Infected']
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# --- Model Loading (Cached with Streamlit) ---
@st.cache_resource
def load_models():
sam_model = None
mask_generator = None
classification_model = None
print("--- Loading Models (cached) ---") # Add print to see when cache is missed
# --- Load SAM Model Manually ---
print("Loading SAM model manually...")
try:
# 1. Check paths
if not os.path.exists(SAM_MODEL_CONFIG_PATH):
raise FileNotFoundError(f"SAM config file not found at {SAM_MODEL_CONFIG_PATH}")
if not os.path.exists(SAM_CHECKPOINT_PATH):
raise FileNotFoundError(f"SAM checkpoint file not found at {SAM_CHECKPOINT_PATH}")
print(f" Config Path: {SAM_MODEL_CONFIG_PATH}")
print(f" Checkpoint Path: {SAM_CHECKPOINT_PATH}")
print(f" Device: {DEVICE}")
# 2. Load config directly
cfg = OmegaConf.load(SAM_MODEL_CONFIG_PATH)
OmegaConf.resolve(cfg) # Resolve any interpolations
# 3. Instantiate model from config
print(" Instantiating SAM model from config...")
sam_model = instantiate(cfg.model, _recursive_=True)
print(" SAM model instantiated.")
# 4. Load checkpoint weights using imported function
print(" Loading checkpoint weights...")
_load_checkpoint(sam_model, SAM_CHECKPOINT_PATH)
print(" Checkpoint loaded.")
# 5. Set device and eval mode
sam_model.to(DEVICE)
sam_model.eval()
print("SAM model moved to device and set to eval mode.")
# 6. Configure the automatic mask generator
print(" Configuring SamAutomaticMaskGenerator...")
mask_generator = automatic_mask_generator.SAM2AutomaticMaskGenerator(
model=sam_model,
points_per_side=32,
pred_iou_thresh=0.88,
stability_score_thresh=0.95,
min_mask_region_area=100,
output_mode="binary_mask"
)
print("SAM model and Mask Generator loaded successfully.")
except FileNotFoundError as e:
print(f"ERROR loading SAM (File Not Found): {e}")
# Use st.error for user visibility in Streamlit
st.error(f"SAM Model/Config File Not Found: {e}")
sam_model = None
mask_generator = None
except ImportError as e:
print(f"ERROR: A dependency (like OmegaConf) or sam2 import failed: {e}")
st.error(f"Import Error Loading SAM: {e}")
sam_model = None
mask_generator = None
except Exception as e:
print(f"ERROR loading SAM model manually: {e}")
import traceback
traceback.print_exc()
st.error(f"General Error Loading SAM Model: {e}")
sam_model = None
mask_generator = None
# --- End SAM Model Loading ---
# --- Load Classification Model ---
print("Loading Classification model...")
if os.path.exists(CLASSIFICATION_MODEL_PATH):
try:
classification_model = models.mobilenet_v3_small(weights=None)
classification_model.classifier[3] = torch.nn.Linear(classification_model.classifier[3].in_features, NUM_CLASSES)
checkpoint = torch.load(CLASSIFICATION_MODEL_PATH, map_location=DEVICE, weights_only=False)
if isinstance(checkpoint, dict) and 'state_dict' in checkpoint:
state_dict = checkpoint['state_dict']
print(" Extracted state_dict from 'state_dict' key.")
elif isinstance(checkpoint, dict) and 'model' in checkpoint:
state_dict = checkpoint['model']
print(" Extracted state_dict from 'model' key.")
elif isinstance(checkpoint, dict):
state_dict = checkpoint
print(" Using loaded checkpoint dictionary as state_dict.")
else:
state_dict = checkpoint
print(" Using loaded object directly as state_dict.")
if not isinstance(state_dict, dict):
raise TypeError(f"Could not extract a state dictionary (dict) from checkpoint. Got type: {type(state_dict)}")
cleaned_state_dict = {}
prefix_to_remove = "backbone."
needs_cleaning = any(key.startswith(prefix_to_remove) for key in state_dict.keys())
if needs_cleaning:
print(f" Cleaning keys: Removing '{prefix_to_remove}' prefix.")
for k, v in state_dict.items():
if k.startswith(prefix_to_remove):
cleaned_state_dict[k[len(prefix_to_remove):]] = v
else:
cleaned_state_dict[k] = v
else:
print(" No 'backbone.' prefix found, using state_dict keys as is.")
cleaned_state_dict = state_dict
report = classification_model.load_state_dict(cleaned_state_dict, strict=True)
print(f" Classification model load report - Missing: {report.missing_keys}, Unexpected: {report.unexpected_keys}")
if report.missing_keys or report.unexpected_keys:
st.warning(f"Classification Model Issues - Missing: {report.missing_keys}, Unexpected: {report.unexpected_keys}")
# Decide if this is fatal - maybe proceed anyway?
# For now, we'll proceed but warn the user.
classification_model.to(DEVICE)
classification_model.eval()
print("Classification model loaded and ready.")
except Exception as e:
print(f"Error loading classification model: {e}")
import traceback
traceback.print_exc()
st.error(f"Error Loading Classification Model: {e}")
classification_model = None
else:
print(f"Classification model not found at {CLASSIFICATION_MODEL_PATH}")
st.error(f"Classification Model Not Found at {CLASSIFICATION_MODEL_PATH}")
classification_model = None
# --- End Classification Model Loading ---
print("--- Model Loading Complete Check ---")
if sam_model is None or mask_generator is None or classification_model is None:
# Error messages were already shown above
print(" ERROR: One or more models failed to load properly.")
return None, None, None # Return None tuple if loading failed
print("--- Model Loading Fully Succeeded ---")
return sam_model, mask_generator, classification_model
# --- Preprocessing Definition (Identical) ---
preprocess_transform = T.Compose([
T.Resize(256, interpolation=T.InterpolationMode.BILINEAR),
T.CenterCrop(224),
T.ToTensor(),
T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
# --- Video Processing Function (Streamlit Adaptation) ---
def process_video_streamlit(video_path, sam_model, mask_generator, classification_model):
# Remove placeholder logic
# st.write(f"Processing video: {video_path}")
# time.sleep(2) # Simulate work
# st.success("Placeholder: Video processed!")
# ... placeholder results ...
# --- Start Actual Logic (Adapted from Gradio app.py) ---
segment_results = [] # List of (PIL_Image, Label_String)
annotated_full_frames = [] # List of PIL_Image
try:
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
st.error("Error opening video file.")
return [], []
frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
fps = cap.get(cv2.CAP_PROP_FPS)
st.write(f"Input video ({os.path.basename(video_path)}): {frame_count} frames @ {fps:.2f} FPS")
# --- Filtering Parameters (Same as before) ---
process_every_n_frames = 100
min_aspect_ratio = 0.2
max_aspect_ratio = 5.0
lower_leaf_hsv = np.array([15, 40, 40])
upper_leaf_hsv = np.array([80, 255, 230])
min_leaf_color_ratio = 0.15
min_laplacian_variance = 150.0
nms_iou_threshold = 0.5
print(f"Processing every {process_every_n_frames} frames.")
print(f"Filtering masks with aspect ratio outside ({min_aspect_ratio}, {max_aspect_ratio}).")
print(f"Filtering segments with less than {min_leaf_color_ratio*100:.0f}% leaf-like pixels.")
print(f"Filtering segments with Laplacian variance < {min_laplacian_variance:.1f}.")
print(f"Applying NMS with IoU threshold: {nms_iou_threshold}")
# --- Streamlit Progress Bar ---
progress_bar = st.progress(0, text="Starting video processing...")
processed_frame_count_for_display = 0
for frame_idx in range(frame_count):
ret, frame = cap.read()
if not ret:
break
# Update progress bar
progress_text = f"Processing frame {frame_idx + 1}/{frame_count}"
progress_bar.progress( (frame_idx + 1) / frame_count, text=progress_text)
# --- Apply Frame Sampling ---
if frame_idx % process_every_n_frames != 0:
continue
# --- Process this sampled frame ---
processed_frame_count_for_display += 1
start_time = time.time()
print(f"\nProcessing sampled frame index {frame_idx} (Display Frame {processed_frame_count_for_display})...")
# --- SAM Mask Generation ---
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
initial_masks = mask_generator.generate(frame_rgb)
print(f" Found {len(initial_masks)} potential masks initially.")
if not initial_masks: continue
# --- NMS ---
boxes_xywh = np.array([ann['bbox'] for ann in initial_masks])
scores = np.array([ann['predicted_iou'] for ann in initial_masks])
boxes_xyxy = boxes_xywh.copy()
boxes_xyxy[:, 2] = boxes_xywh[:, 0] + boxes_xywh[:, 2]
boxes_xyxy[:, 3] = boxes_xywh[:, 1] + boxes_xywh[:, 3]
boxes_tensor = torch.as_tensor(boxes_xyxy, dtype=torch.float32)
scores_tensor = torch.as_tensor(scores, dtype=torch.float32)
keep_indices = nms(boxes_tensor, scores_tensor, nms_iou_threshold)
filtered_masks = [initial_masks[i] for i in keep_indices.tolist()]
print(f" {len(filtered_masks)} masks remaining after NMS.")
if not filtered_masks: continue
# --- Classification & Filtering ---
processed_mask_count = 0
aspect_ratio_passed_count = 0
color_filter_passed_count = 0
sharpness_filter_passed_count = 0
infected_count = 0
annotated_frame_for_output = frame_rgb.copy() # Start with clean frame for annotations
for ann_idx, ann in enumerate(filtered_masks):
processed_mask_count += 1
if 'bbox' in ann and isinstance(ann['bbox'], (list, tuple)) and len(ann['bbox']) == 4:
bbox = ann['bbox']
try:
x_min, y_min, width, height = map(int, bbox)
img_h, img_w, _ = frame_rgb.shape
x_max = min(x_min + width, img_w)
y_max = min(y_min + height, img_h)
x_min = max(x_min, 0)
y_min = max(y_min, 0)
clipped_width = x_max - x_min
clipped_height = y_max - y_min
if clipped_width <= 0 or clipped_height <= 0: continue
# 1. Aspect Ratio Filter
aspect_ratio = clipped_width / clipped_height
if not (min_aspect_ratio < aspect_ratio < max_aspect_ratio): continue
aspect_ratio_passed_count += 1
# 2. Color Filter
cropped_patch_np = frame_rgb[y_min:y_max, x_min:x_max]
if cropped_patch_np.size == 0: continue
segmentation_mask = ann['segmentation']
if segmentation_mask.dtype == bool:
cropped_segmentation_mask_bool = segmentation_mask[y_min:y_max, x_min:x_max]
else:
cropped_segmentation_mask_bool = segmentation_mask[y_min:y_max, x_min:x_max].astype(bool)
if cropped_segmentation_mask_bool.shape[:2] != cropped_patch_np.shape[:2]:
print(f"Warning: Cropped mask shape {cropped_segmentation_mask_bool.shape[:2]} doesn't match patch shape {cropped_patch_np.shape[:2]}. Skipping.")
continue
cropped_patch_hsv = cv2.cvtColor(cropped_patch_np, cv2.COLOR_RGB2HSV)
color_range_mask = cv2.inRange(cropped_patch_hsv, lower_leaf_hsv, upper_leaf_hsv)
cropped_segmentation_mask_uint8 = cropped_segmentation_mask_bool.astype(np.uint8)
pixels_in_segment_and_range = cv2.bitwise_and(color_range_mask, color_range_mask, mask=cropped_segmentation_mask_uint8)
total_pixels_in_segment = np.count_nonzero(cropped_segmentation_mask_uint8)
if total_pixels_in_segment == 0: continue
leaf_pixel_ratio = np.count_nonzero(pixels_in_segment_and_range) / total_pixels_in_segment
if leaf_pixel_ratio < min_leaf_color_ratio: continue
color_filter_passed_count += 1
# 3. Sharpness Filter
gray_crop = cv2.cvtColor(cropped_patch_np, cv2.COLOR_RGB2GRAY)
laplacian_var = cv2.Laplacian(gray_crop, cv2.CV_64F).var()
if laplacian_var < min_laplacian_variance: continue
sharpness_filter_passed_count += 1
# 4. Classification
cropped_patch_pil = Image.fromarray(cropped_patch_np)
input_tensor = preprocess_transform(cropped_patch_pil)
input_batch = input_tensor.unsqueeze(0).to(DEVICE)
with torch.no_grad():
output = classification_model(input_batch)
probabilities = torch.softmax(output[0], dim=0)
confidence, predicted_class_idx = torch.max(probabilities, 0)
predicted_class_name = CLASS_NAMES[predicted_class_idx.item()]
confidence_score = confidence.item()
label = f"{predicted_class_name} ({confidence_score:.2f})"
segment_results.append((cropped_patch_pil, label))
if predicted_class_name == 'Infected' and confidence_score > 0.5:
infected_count += 1
cv2.rectangle(annotated_frame_for_output, (x_min, y_min), (x_max, y_max), (0, 255, 0), 2)
cv2.putText(annotated_frame_for_output, label, (x_min, y_min - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 1)
except Exception as e:
original_mask_index = keep_indices[ann_idx].item()
print(f" Error processing mask {original_mask_index} (after NMS index {ann_idx}) with bbox {bbox}: {e}")
print(f" Processed {processed_mask_count} masks after NMS.")
print(f" {aspect_ratio_passed_count} passed aspect ratio filter.")
print(f" {color_filter_passed_count} passed color filter.")
print(f" {sharpness_filter_passed_count} passed sharpness filter (considered leaves)." )
if infected_count > 0:
print(f" Detected {infected_count} infected leaf segments in this frame.")
# Add the annotated frame
annotated_full_frames.append(Image.fromarray(annotated_frame_for_output))
end_time = time.time()
print(f" Sampled frame processing time: {end_time - start_time:.2f}s")
# --- ADDED BREAK: Stop after processing the first sampled frame ---
print(f" DEBUG: Breaking loop after processing first sampled frame (index {frame_idx}).")
break
# --- END ADDED BREAK ---
cap.release()
progress_bar.progress(1.0, text="Video processing complete!")
print(f"Finished processing. Returning {len(segment_results)} detected leaf segments and {len(annotated_full_frames)} processed frames.")
except Exception as e:
st.error(f"An error occurred during video processing: {e}")
import traceback
traceback.print_exc()
# Ensure progress bar completes even on error
if 'progress_bar' in locals():
progress_bar.progress(1.0, text="Processing failed!")
return [], [] # Return empty lists on failure
# Handle cases where no segments or frames were processed
if not segment_results:
st.info("No leaf-like segments found or processed after filtering.")
# Optionally return placeholder images or just empty lists
# Returning empty lists for consistency here
return [], []
return segment_results, annotated_full_frames
# --- Streamlit App UI ---
st.set_page_config(layout="wide")
st.title("Red Spider Mite Detection (Streamlit)")
# Load models (will be cached)
sam_model, mask_generator, classification_model = load_models()
st.markdown("Upload a video file OR select an example below to detect red spider mites on leaves.")
uploaded_file = st.file_uploader("Choose a video...", type=["mp4", "mov", "avi"])
# --- Example Videos Section ---
st.markdown("**Or use an Example Video:**")
example_video_dir = os.path.join(_APP_DIR, "test_videos")
example_files = []
if os.path.isdir(example_video_dir):
example_files = [f for f in os.listdir(example_video_dir) if f.lower().endswith(('.mp4', '.avi', '.mov'))]
clicked_example = None
if not example_files:
st.warning("No example videos found in ./test_videos directory.")
else:
# Create columns for examples
cols = st.columns(len(example_files))
for i, example_file in enumerate(example_files):
example_full_path = os.path.join(example_video_dir, example_file)
with cols[i]:
# Use nested columns to control width (e.g., 2/3 width for video column)
vid_col, _ = st.columns([2, 1])
with vid_col:
st.markdown(f"**{example_file}**") # Display filename
st.video(example_full_path) # Display the video
if st.button(f"Use Example: {example_file}", key=f"ex_{i}"): # Use unique key for buttons
clicked_example = example_full_path
# --- End Example Videos Section ---
process_button_main = st.button("Detect Mites from Uploaded Video")
# Placeholders for results
results_placeholder = st.empty()
# Determine which action triggered the run
video_path_to_process = None
if clicked_example:
video_path_to_process = clicked_example
print(f"Processing triggered by example button: {video_path_to_process}")
elif process_button_main:
if uploaded_file is not None:
# Save uploaded file temporarily only if main button clicked and file exists
with tempfile.NamedTemporaryFile(delete=False, suffix=os.path.splitext(uploaded_file.name)[1]) as tmp_file:
tmp_file.write(uploaded_file.getvalue())
video_path_to_process = tmp_file.name
print(f"Processing triggered by main button with uploaded file: {video_path_to_process}")
else:
st.warning("Please upload a video file before clicking 'Detect Mites from Uploaded Video'.")
# --- Run Processing if a path is determined ---
if video_path_to_process and sam_model is not None:
is_temp_file = (process_button_main and uploaded_file is not None) # Flag to know if we need to delete later
with results_placeholder.container():
st.write(f"Processing: {os.path.basename(video_path_to_process)}... Please wait.")
with st.spinner('Analyzing video frames...'):
# Call processing function
segment_results, annotated_full_frames = process_video_streamlit(
video_path_to_process, sam_model, mask_generator, classification_model
)
# Display results (use_container_width already updated)
st.subheader("Detected Leaf Segments (Filtered)")
if segment_results:
num_cols = 6
cols_disp = st.columns(num_cols)
for i, (img, label) in enumerate(segment_results):
with cols_disp[i % num_cols]:
st.image(img, caption=label, use_container_width=True)
else:
st.info("No leaf-like segments found or processed.")
st.subheader("Processed Frames with Infected Detections")
if annotated_full_frames:
num_cols_frames = 2
cols_frames_disp = st.columns(num_cols_frames)
processed_frame_indices = [i for i, f_idx in enumerate(range(0, 10000, 100)) if i < len(annotated_full_frames)] # Crude way to estimate frame#
for i, img in enumerate(annotated_full_frames):
frame_num_approx = (i+1) * 100 # Approximate frame number based on sampling rate
with cols_frames_disp[i % num_cols_frames]:
st.image(img, caption=f"Processed Frame ~{frame_num_approx}", use_container_width=True)
else:
st.info("No frames processed or no infected segments found in frames.")
# Clean up temporary file only if it was created from an upload
if is_temp_file:
try:
os.unlink(video_path_to_process)
print(f"Cleaned up temp file: {video_path_to_process}")
except Exception as e:
st.warning(f"Could not delete temporary file {video_path_to_process}: {e}")
elif (process_button_main or clicked_example) and sam_model is None:
st.error("Models could not be loaded. Cannot process video.") |