File size: 23,542 Bytes
965ab8e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76fe51c
 
965ab8e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76fe51c
965ab8e
 
 
 
 
76fe51c
 
 
 
 
965ab8e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
330ef66
965ab8e
 
330ef66
965ab8e
21f534d
 
 
 
 
 
 
965ab8e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
import streamlit as st
import torch
import torchvision.models as models
import torchvision.transforms as T
from PIL import Image, ImageDraw
import numpy as np
import cv2 # OpenCV for video processing
import os
import sys
import time
import tempfile
from torchvision.ops import nms
# Imports for manual model loading
from omegaconf import OmegaConf
from hydra.utils import instantiate
# Need _load_checkpoint from the local sam2 copy
from sam2.build_sam import _load_checkpoint
from sam2 import automatic_mask_generator

# --- Configuration ---
# Assuming paths relative to the app file location
_APP_DIR = os.path.dirname(os.path.abspath(__file__))
SAM_CHECKPOINT_PATH = os.path.join(_APP_DIR, "checkpoints", "sam2.1_hiera_large.pt")
SAM_MODEL_CONFIG_PATH = os.path.join(_APP_DIR, "sam2", "configs", "sam2.1", "sam2.1_hiera_l.yaml")
CLASSIFICATION_MODEL_PATH = os.path.join(_APP_DIR, "models", "best_mobilenet_v3_small.pth")
NUM_CLASSES = 2
CLASS_NAMES = ['Not Infected', 'Infected']
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# --- Model Loading (Cached with Streamlit) ---
@st.cache_resource
def load_models():
    sam_model = None
    mask_generator = None
    classification_model = None
    print("--- Loading Models (cached) ---") # Add print to see when cache is missed

    # --- Load SAM Model Manually ---
    print("Loading SAM model manually...")
    try:
        # 1. Check paths
        if not os.path.exists(SAM_MODEL_CONFIG_PATH):
            raise FileNotFoundError(f"SAM config file not found at {SAM_MODEL_CONFIG_PATH}")
        if not os.path.exists(SAM_CHECKPOINT_PATH):
            raise FileNotFoundError(f"SAM checkpoint file not found at {SAM_CHECKPOINT_PATH}")
        
        print(f"  Config Path: {SAM_MODEL_CONFIG_PATH}")
        print(f"  Checkpoint Path: {SAM_CHECKPOINT_PATH}")
        print(f"  Device: {DEVICE}")

        # 2. Load config directly
        cfg = OmegaConf.load(SAM_MODEL_CONFIG_PATH)
        OmegaConf.resolve(cfg) # Resolve any interpolations

        # 3. Instantiate model from config
        print("  Instantiating SAM model from config...")
        sam_model = instantiate(cfg.model, _recursive_=True) 
        print("  SAM model instantiated.")

        # 4. Load checkpoint weights using imported function
        print("  Loading checkpoint weights...")
        _load_checkpoint(sam_model, SAM_CHECKPOINT_PATH)
        print("  Checkpoint loaded.")

        # 5. Set device and eval mode
        sam_model.to(DEVICE)
        sam_model.eval()
        print("SAM model moved to device and set to eval mode.")

        # 6. Configure the automatic mask generator
        print("  Configuring SamAutomaticMaskGenerator...")
        mask_generator = automatic_mask_generator.SAM2AutomaticMaskGenerator(
            model=sam_model,
            points_per_side=32,
            pred_iou_thresh=0.88,
            stability_score_thresh=0.95,
            min_mask_region_area=100,
            output_mode="binary_mask"
        )
        print("SAM model and Mask Generator loaded successfully.")

    except FileNotFoundError as e:
        print(f"ERROR loading SAM (File Not Found): {e}")
        # Use st.error for user visibility in Streamlit
        st.error(f"SAM Model/Config File Not Found: {e}") 
        sam_model = None
        mask_generator = None
    except ImportError as e:
        print(f"ERROR: A dependency (like OmegaConf) or sam2 import failed: {e}")
        st.error(f"Import Error Loading SAM: {e}")
        sam_model = None
        mask_generator = None
    except Exception as e:
        print(f"ERROR loading SAM model manually: {e}")
        import traceback
        traceback.print_exc()
        st.error(f"General Error Loading SAM Model: {e}")
        sam_model = None
        mask_generator = None
    # --- End SAM Model Loading ---

    # --- Load Classification Model --- 
    print("Loading Classification model...")
    if os.path.exists(CLASSIFICATION_MODEL_PATH):
        try:
            classification_model = models.mobilenet_v3_small(weights=None)
            classification_model.classifier[3] = torch.nn.Linear(classification_model.classifier[3].in_features, NUM_CLASSES)
            checkpoint = torch.load(CLASSIFICATION_MODEL_PATH, map_location=DEVICE, weights_only=False)
            
            if isinstance(checkpoint, dict) and 'state_dict' in checkpoint:
                state_dict = checkpoint['state_dict']
                print("  Extracted state_dict from 'state_dict' key.")
            elif isinstance(checkpoint, dict) and 'model' in checkpoint:
                 state_dict = checkpoint['model']
                 print("  Extracted state_dict from 'model' key.")
            elif isinstance(checkpoint, dict):
                 state_dict = checkpoint
                 print("  Using loaded checkpoint dictionary as state_dict.") 
            else:
                 state_dict = checkpoint 
                 print("  Using loaded object directly as state_dict.")
            if not isinstance(state_dict, dict):
                 raise TypeError(f"Could not extract a state dictionary (dict) from checkpoint. Got type: {type(state_dict)}")
            
            cleaned_state_dict = {}
            prefix_to_remove = "backbone."
            needs_cleaning = any(key.startswith(prefix_to_remove) for key in state_dict.keys())
            if needs_cleaning:
                print(f"  Cleaning keys: Removing '{prefix_to_remove}' prefix.")
                for k, v in state_dict.items():
                    if k.startswith(prefix_to_remove):
                        cleaned_state_dict[k[len(prefix_to_remove):]] = v
                    else:
                        cleaned_state_dict[k] = v
            else:
                 print("  No 'backbone.' prefix found, using state_dict keys as is.")
                 cleaned_state_dict = state_dict
            
            report = classification_model.load_state_dict(cleaned_state_dict, strict=True)
            print(f"  Classification model load report - Missing: {report.missing_keys}, Unexpected: {report.unexpected_keys}")
            if report.missing_keys or report.unexpected_keys:
                 st.warning(f"Classification Model Issues - Missing: {report.missing_keys}, Unexpected: {report.unexpected_keys}")
                 # Decide if this is fatal - maybe proceed anyway?
                 # For now, we'll proceed but warn the user.
            
            classification_model.to(DEVICE)
            classification_model.eval()
            print("Classification model loaded and ready.")
        except Exception as e:
            print(f"Error loading classification model: {e}")
            import traceback
            traceback.print_exc()
            st.error(f"Error Loading Classification Model: {e}")
            classification_model = None
    else:
        print(f"Classification model not found at {CLASSIFICATION_MODEL_PATH}")
        st.error(f"Classification Model Not Found at {CLASSIFICATION_MODEL_PATH}")
        classification_model = None
    # --- End Classification Model Loading ---

    print("--- Model Loading Complete Check ---")
    if sam_model is None or mask_generator is None or classification_model is None:
         # Error messages were already shown above
         print("  ERROR: One or more models failed to load properly.")
         return None, None, None # Return None tuple if loading failed

    print("--- Model Loading Fully Succeeded ---")
    return sam_model, mask_generator, classification_model

# --- Preprocessing Definition (Identical) ---
preprocess_transform = T.Compose([
    T.Resize(256, interpolation=T.InterpolationMode.BILINEAR),
    T.CenterCrop(224),
    T.ToTensor(),
    T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])

# --- Video Processing Function (Streamlit Adaptation) ---
def process_video_streamlit(video_path, sam_model, mask_generator, classification_model):
    # Remove placeholder logic
    # st.write(f"Processing video: {video_path}")
    # time.sleep(2) # Simulate work
    # st.success("Placeholder: Video processed!")
    # ... placeholder results ...

    # --- Start Actual Logic (Adapted from Gradio app.py) ---
    segment_results = [] # List of (PIL_Image, Label_String)
    annotated_full_frames = [] # List of PIL_Image

    try:
        cap = cv2.VideoCapture(video_path)
        if not cap.isOpened():
            st.error("Error opening video file.")
            return [], []

        frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
        fps = cap.get(cv2.CAP_PROP_FPS)
        st.write(f"Input video ({os.path.basename(video_path)}): {frame_count} frames @ {fps:.2f} FPS")

        # --- Filtering Parameters (Same as before) ---
        process_every_n_frames = 100
        min_aspect_ratio = 0.2
        max_aspect_ratio = 5.0
        lower_leaf_hsv = np.array([15, 40, 40])
        upper_leaf_hsv = np.array([80, 255, 230])
        min_leaf_color_ratio = 0.15
        min_laplacian_variance = 150.0
        nms_iou_threshold = 0.5
        print(f"Processing every {process_every_n_frames} frames.")
        print(f"Filtering masks with aspect ratio outside ({min_aspect_ratio}, {max_aspect_ratio}).")
        print(f"Filtering segments with less than {min_leaf_color_ratio*100:.0f}% leaf-like pixels.")
        print(f"Filtering segments with Laplacian variance < {min_laplacian_variance:.1f}.")
        print(f"Applying NMS with IoU threshold: {nms_iou_threshold}")

        # --- Streamlit Progress Bar ---
        progress_bar = st.progress(0, text="Starting video processing...")
        processed_frame_count_for_display = 0

        for frame_idx in range(frame_count):
            ret, frame = cap.read()
            if not ret:
                break

            # Update progress bar
            progress_text = f"Processing frame {frame_idx + 1}/{frame_count}"
            progress_bar.progress( (frame_idx + 1) / frame_count, text=progress_text)

            # --- Apply Frame Sampling ---
            if frame_idx % process_every_n_frames != 0:
                continue
            
            # --- Process this sampled frame ---
            processed_frame_count_for_display += 1 
            start_time = time.time()
            print(f"\nProcessing sampled frame index {frame_idx} (Display Frame {processed_frame_count_for_display})...")

            # --- SAM Mask Generation ---
            frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
            initial_masks = mask_generator.generate(frame_rgb)
            print(f"  Found {len(initial_masks)} potential masks initially.")
            if not initial_masks: continue

            # --- NMS --- 
            boxes_xywh = np.array([ann['bbox'] for ann in initial_masks])
            scores = np.array([ann['predicted_iou'] for ann in initial_masks])
            boxes_xyxy = boxes_xywh.copy()
            boxes_xyxy[:, 2] = boxes_xywh[:, 0] + boxes_xywh[:, 2]
            boxes_xyxy[:, 3] = boxes_xywh[:, 1] + boxes_xywh[:, 3]
            boxes_tensor = torch.as_tensor(boxes_xyxy, dtype=torch.float32)
            scores_tensor = torch.as_tensor(scores, dtype=torch.float32)
            keep_indices = nms(boxes_tensor, scores_tensor, nms_iou_threshold)
            filtered_masks = [initial_masks[i] for i in keep_indices.tolist()]
            print(f"  {len(filtered_masks)} masks remaining after NMS.")
            if not filtered_masks: continue
            
            # --- Classification & Filtering --- 
            processed_mask_count = 0
            aspect_ratio_passed_count = 0
            color_filter_passed_count = 0
            sharpness_filter_passed_count = 0
            infected_count = 0
            annotated_frame_for_output = frame_rgb.copy() # Start with clean frame for annotations

            for ann_idx, ann in enumerate(filtered_masks):
                processed_mask_count += 1
                if 'bbox' in ann and isinstance(ann['bbox'], (list, tuple)) and len(ann['bbox']) == 4:
                    bbox = ann['bbox']
                    try:
                        x_min, y_min, width, height = map(int, bbox)
                        img_h, img_w, _ = frame_rgb.shape
                        x_max = min(x_min + width, img_w)
                        y_max = min(y_min + height, img_h)
                        x_min = max(x_min, 0)
                        y_min = max(y_min, 0)
                        clipped_width = x_max - x_min
                        clipped_height = y_max - y_min

                        if clipped_width <= 0 or clipped_height <= 0: continue
                        
                        # 1. Aspect Ratio Filter
                        aspect_ratio = clipped_width / clipped_height
                        if not (min_aspect_ratio < aspect_ratio < max_aspect_ratio): continue 
                        aspect_ratio_passed_count += 1

                        # 2. Color Filter
                        cropped_patch_np = frame_rgb[y_min:y_max, x_min:x_max]
                        if cropped_patch_np.size == 0: continue
                        segmentation_mask = ann['segmentation']
                        if segmentation_mask.dtype == bool:
                            cropped_segmentation_mask_bool = segmentation_mask[y_min:y_max, x_min:x_max]
                        else:
                            cropped_segmentation_mask_bool = segmentation_mask[y_min:y_max, x_min:x_max].astype(bool)
                        if cropped_segmentation_mask_bool.shape[:2] != cropped_patch_np.shape[:2]:
                             print(f"Warning: Cropped mask shape {cropped_segmentation_mask_bool.shape[:2]} doesn't match patch shape {cropped_patch_np.shape[:2]}. Skipping.")
                             continue
                        cropped_patch_hsv = cv2.cvtColor(cropped_patch_np, cv2.COLOR_RGB2HSV)
                        color_range_mask = cv2.inRange(cropped_patch_hsv, lower_leaf_hsv, upper_leaf_hsv)
                        cropped_segmentation_mask_uint8 = cropped_segmentation_mask_bool.astype(np.uint8)
                        pixels_in_segment_and_range = cv2.bitwise_and(color_range_mask, color_range_mask, mask=cropped_segmentation_mask_uint8)
                        total_pixels_in_segment = np.count_nonzero(cropped_segmentation_mask_uint8)
                        if total_pixels_in_segment == 0: continue
                        leaf_pixel_ratio = np.count_nonzero(pixels_in_segment_and_range) / total_pixels_in_segment
                        if leaf_pixel_ratio < min_leaf_color_ratio: continue 
                        color_filter_passed_count += 1

                        # 3. Sharpness Filter
                        gray_crop = cv2.cvtColor(cropped_patch_np, cv2.COLOR_RGB2GRAY)
                        laplacian_var = cv2.Laplacian(gray_crop, cv2.CV_64F).var()
                        if laplacian_var < min_laplacian_variance: continue 
                        sharpness_filter_passed_count += 1
                            
                        # 4. Classification
                        cropped_patch_pil = Image.fromarray(cropped_patch_np)
                        input_tensor = preprocess_transform(cropped_patch_pil)
                        input_batch = input_tensor.unsqueeze(0).to(DEVICE)
                        with torch.no_grad():
                            output = classification_model(input_batch)
                            probabilities = torch.softmax(output[0], dim=0)
                            confidence, predicted_class_idx = torch.max(probabilities, 0)
                        predicted_class_name = CLASS_NAMES[predicted_class_idx.item()]
                        confidence_score = confidence.item()
                        
                        label = f"{predicted_class_name} ({confidence_score:.2f})"
                        segment_results.append((cropped_patch_pil, label))
                        
                        if predicted_class_name == 'Infected' and confidence_score > 0.5:
                            infected_count += 1
                            cv2.rectangle(annotated_frame_for_output, (x_min, y_min), (x_max, y_max), (0, 255, 0), 2)
                            cv2.putText(annotated_frame_for_output, label, (x_min, y_min - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 1)
                                
                    except Exception as e:
                        original_mask_index = keep_indices[ann_idx].item()
                        print(f"    Error processing mask {original_mask_index} (after NMS index {ann_idx}) with bbox {bbox}: {e}")
            
            print(f"  Processed {processed_mask_count} masks after NMS.")
            print(f"    {aspect_ratio_passed_count} passed aspect ratio filter.")
            print(f"    {color_filter_passed_count} passed color filter.")
            print(f"    {sharpness_filter_passed_count} passed sharpness filter (considered leaves)." )
            if infected_count > 0:
                print(f"  Detected {infected_count} infected leaf segments in this frame.")

            # Add the annotated frame 
            annotated_full_frames.append(Image.fromarray(annotated_frame_for_output)) 
            
            end_time = time.time()
            print(f"  Sampled frame processing time: {end_time - start_time:.2f}s")

            # --- ADDED BREAK: Stop after processing the first sampled frame ---
            print(f"  DEBUG: Breaking loop after processing first sampled frame (index {frame_idx}).")
            break 
            # --- END ADDED BREAK ---

        cap.release()
        progress_bar.progress(1.0, text="Video processing complete!")
        print(f"Finished processing. Returning {len(segment_results)} detected leaf segments and {len(annotated_full_frames)} processed frames.")
    
    except Exception as e:
        st.error(f"An error occurred during video processing: {e}")
        import traceback
        traceback.print_exc()
        # Ensure progress bar completes even on error
        if 'progress_bar' in locals():
            progress_bar.progress(1.0, text="Processing failed!")
        return [], [] # Return empty lists on failure

    # Handle cases where no segments or frames were processed
    if not segment_results:
        st.info("No leaf-like segments found or processed after filtering.")
        # Optionally return placeholder images or just empty lists
        # Returning empty lists for consistency here
        return [], [] 
        
    return segment_results, annotated_full_frames 

# --- Streamlit App UI ---
st.set_page_config(layout="wide")
st.title("Red Spider Mite Detection (Streamlit)")

# Load models (will be cached)
sam_model, mask_generator, classification_model = load_models()

st.markdown("Upload a video file OR select an example below to detect red spider mites on leaves.")

uploaded_file = st.file_uploader("Choose a video...", type=["mp4", "mov", "avi"])

# --- Example Videos Section ---
st.markdown("**Or use an Example Video:**")
example_video_dir = os.path.join(_APP_DIR, "test_videos")
example_files = []
if os.path.isdir(example_video_dir):
    example_files = [f for f in os.listdir(example_video_dir) if f.lower().endswith(('.mp4', '.avi', '.mov'))]

clicked_example = None
if not example_files:
    st.warning("No example videos found in ./test_videos directory.")
else:
    # Create columns for examples
    cols = st.columns(len(example_files))
    for i, example_file in enumerate(example_files):
        example_full_path = os.path.join(example_video_dir, example_file)
        with cols[i]:
            # Use nested columns to control width (e.g., 2/3 width for video column)
            vid_col, _ = st.columns([2, 1]) 
            with vid_col:
                st.markdown(f"**{example_file}**") # Display filename
                st.video(example_full_path) # Display the video
                if st.button(f"Use Example: {example_file}", key=f"ex_{i}"): # Use unique key for buttons
                    clicked_example = example_full_path
# --- End Example Videos Section ---

process_button_main = st.button("Detect Mites from Uploaded Video")

# Placeholders for results
results_placeholder = st.empty()

# Determine which action triggered the run
video_path_to_process = None
if clicked_example:
    video_path_to_process = clicked_example
    print(f"Processing triggered by example button: {video_path_to_process}")
elif process_button_main:
    if uploaded_file is not None:
        # Save uploaded file temporarily only if main button clicked and file exists
        with tempfile.NamedTemporaryFile(delete=False, suffix=os.path.splitext(uploaded_file.name)[1]) as tmp_file:
            tmp_file.write(uploaded_file.getvalue())
            video_path_to_process = tmp_file.name
        print(f"Processing triggered by main button with uploaded file: {video_path_to_process}")
    else:
        st.warning("Please upload a video file before clicking 'Detect Mites from Uploaded Video'.")

# --- Run Processing if a path is determined ---
if video_path_to_process and sam_model is not None:
    is_temp_file = (process_button_main and uploaded_file is not None) # Flag to know if we need to delete later
    
    with results_placeholder.container():
        st.write(f"Processing: {os.path.basename(video_path_to_process)}... Please wait.")
        with st.spinner('Analyzing video frames...'):
            
            # Call processing function
            segment_results, annotated_full_frames = process_video_streamlit(
                video_path_to_process, sam_model, mask_generator, classification_model
            )

            # Display results (use_container_width already updated)
            st.subheader("Detected Leaf Segments (Filtered)")
            if segment_results:
                num_cols = 6
                cols_disp = st.columns(num_cols)
                for i, (img, label) in enumerate(segment_results):
                    with cols_disp[i % num_cols]:
                        st.image(img, caption=label, use_container_width=True)
            else:
                st.info("No leaf-like segments found or processed.")

            st.subheader("Processed Frames with Infected Detections")
            if annotated_full_frames:
                 num_cols_frames = 2
                 cols_frames_disp = st.columns(num_cols_frames)
                 processed_frame_indices = [i for i, f_idx in enumerate(range(0, 10000, 100)) if i < len(annotated_full_frames)] # Crude way to estimate frame#
                 for i, img in enumerate(annotated_full_frames):
                     frame_num_approx = (i+1) * 100 # Approximate frame number based on sampling rate
                     with cols_frames_disp[i % num_cols_frames]:
                         st.image(img, caption=f"Processed Frame ~{frame_num_approx}", use_container_width=True)
            else:
                 st.info("No frames processed or no infected segments found in frames.")

            # Clean up temporary file only if it was created from an upload
            if is_temp_file:
                try:
                    os.unlink(video_path_to_process)
                    print(f"Cleaned up temp file: {video_path_to_process}")
                except Exception as e:
                    st.warning(f"Could not delete temporary file {video_path_to_process}: {e}")

elif (process_button_main or clicked_example) and sam_model is None:
     st.error("Models could not be loaded. Cannot process video.")