codeexplainer / app.py
jk12p's picture
Update app.py
4eb6999 verified
raw
history blame
1.13 kB
import streamlit as st
from transformers import T5Tokenizer, T5ForConditionalGeneration
@st.cache_resource
def load_model():
tokenizer = T5Tokenizer.from_pretrained("Salesforce/codet5-base")
model = T5ForConditionalGeneration.from_pretrained("Salesforce/codet5-base")
return tokenizer, model
tokenizer, model = load_model()
st.title("🧠 Code Explainer (CodeT5)")
st.markdown("Paste code and get an explanation using the CodeT5 model from Hugging Face.")
code_input = st.text_area("Paste your code here:", height=200)
if st.button("Explain Code"):
if code_input.strip() == "":
st.warning("Please paste some code first.")
else:
with st.spinner("Generating explanation..."):
input_text = f"summarize: {code_input.strip()}"
input_ids = tokenizer.encode(input_text, return_tensors="pt", truncation=True, max_length=512)
outputs = model.generate(input_ids, max_length=150, num_beams=4, early_stopping=True)
summary = tokenizer.decode(outputs[0], skip_special_tokens=True)
st.success("Explanation:")
st.write(summary)