Spaces:
Sleeping
Sleeping
import streamlit as st | |
from transformers import T5Tokenizer, T5ForConditionalGeneration | |
def load_model(): | |
tokenizer = T5Tokenizer.from_pretrained("Salesforce/codet5-base") | |
model = T5ForConditionalGeneration.from_pretrained("Salesforce/codet5-base") | |
return tokenizer, model | |
tokenizer, model = load_model() | |
st.title("🧠 Code Explainer (CodeT5)") | |
st.markdown("Paste code and get an explanation using the CodeT5 model from Hugging Face.") | |
code_input = st.text_area("Paste your code here:", height=200) | |
if st.button("Explain Code"): | |
if code_input.strip() == "": | |
st.warning("Please paste some code first.") | |
else: | |
with st.spinner("Generating explanation..."): | |
input_text = f"summarize: {code_input.strip()}" | |
input_ids = tokenizer.encode(input_text, return_tensors="pt", truncation=True, max_length=512) | |
outputs = model.generate(input_ids, max_length=150, num_beams=4, early_stopping=True) | |
summary = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
st.success("Explanation:") | |
st.write(summary) | |