Spaces:
Paused
Paused
import gradio as gr | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
import torch | |
# Cargar el modelo y tokenizador | |
model_name = "BSC-LT/salamandra-7b-instruct" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16) | |
# Funci贸n de generaci贸n de texto | |
def generate_response(prompt): | |
inputs = tokenizer(prompt, return_tensors="pt") | |
outputs = model.generate(inputs.input_ids, max_length=200, do_sample=True, temperature=0.7) | |
return tokenizer.decode(outputs[0], skip_special_tokens=True) | |
# Crear la interfaz en Gradio | |
with gr.Blocks() as demo: | |
gr.Markdown("# 馃 Chatbot ALIA - Prueba en Hugging Face") | |
with gr.Row(): | |
input_text = gr.Textbox(label="Escribe tu texto aqu铆") | |
output_text = gr.Textbox(label="Respuesta de ALIA") | |
submit_button = gr.Button("Generar respuesta") | |
submit_button.click(generate_response, inputs=input_text, outputs=output_text) | |
demo.launch() | |