Spaces:
Runtime error
Runtime error
import abc | |
from logging import info | |
from typing import Tuple | |
import numpy as np | |
import torch | |
import xarray as xr | |
class Transformation(object): | |
def fit(self, data: xr.DataArray): | |
raise NotImplementedError() | |
def transform(self, data: xr.DataArray): | |
raise NotImplementedError() | |
def inverse_transform(self, data: xr.DataArray): | |
raise NotImplementedError() | |
def fit_transform(self, data: xr.DataArray): | |
return self.fit(data).transform(data) | |
def to_dict(self) -> dict: | |
raise NotImplementedError() | |
def from_dict(info: dict): | |
raise NotImplementedError() | |
def reset(self): | |
raise NotImplementedError() | |
class MinMaxScaler(Transformation): | |
"""_summary_ | |
Minmax scaling on the entire data | |
""" | |
def __init__(self, new_min=1, new_max=2): | |
self._is_fitted = False | |
self.new_min = new_min | |
self.new_max = new_max | |
self._min = None | |
self._max = None | |
def min(self) -> float: | |
return self._min | |
def max(self) -> float: | |
return self._max | |
def is_fitted(self) -> bool: | |
return self._is_fitted | |
def fit(self, data: xr.DataArray): | |
if not self.is_fitted: | |
self._max = data.max().values | |
self._min = data.min().values | |
self._is_fitted = True | |
else: | |
info("Already fitted, skipping function.") | |
return self | |
def _transform(self, data: xr.DataArray): | |
return ( | |
((data - self.min) / (self.max - self.min)) * (self.new_max - self.new_min) | |
) + self.new_min | |
def transform(self, data: xr.DataArray) -> xr.DataArray: | |
assert self.min is not None and self.max is not None, "You must run fit first." | |
data = xr.apply_ufunc(self._transform, data, dask="forbidden") | |
return data | |
def fit_transform(self, data): | |
self.fit(data) | |
return self.transform(data) | |
def inverse_transform(self, data): | |
return data * (self.max - self.min) + self.min | |
def to_dict(self) -> dict: | |
out_dict = { | |
"base": self.__module__, | |
"class": self.__class__.__name__, | |
"new_min": str(self.new_min), | |
"new_max": str(self.new_max), | |
"min": str(self.min), | |
"max": str(self.max), | |
"is_fitted": self.is_fitted, | |
} | |
return out_dict | |
def from_dict(info: dict): | |
# with open(yaml_path, 'r') as file: | |
# data = yaml.load(file, Loader=yaml.SafeLoader) | |
out = MinMaxScaler( | |
new_min=np.float32(info["new_min"]), new_max=np.float32(info["new_max"]) | |
) | |
out._min = np.float32(info["min"]) | |
out._max = np.float32(info["max"]) | |
out._is_fitted = info["is_fitted"] | |
return out | |
def reset(self): | |
self.__init__(self.new_min, self.new_max) | |
def __str__(self): | |
return ( | |
f"min: {self.min}, " | |
f"max: {self.max}, " | |
f"new_max: {self.new_max}, " | |
f"new_min: {self.new_min}" | |
) | |
class StandardScaler(Transformation): | |
"""_summary_ | |
Standard scaling on the entire data | |
""" | |
def __init__(self, epsilon=1e-8): | |
self.epsilon = epsilon | |
self._is_fitted = False | |
self._mean = None | |
self._std = None | |
self._min = None | |
self._max = None | |
self._sl_scale_factor = None | |
def mean(self) -> float: | |
return self._mean | |
def std(self) -> float: | |
return self._std | |
def min(self) -> float: | |
return self._min | |
def max(self) -> float: | |
return self._max | |
def sl_scale_factor(self) -> float: | |
return self._sl_scale_factor | |
def is_fitted(self) -> bool: | |
return self._is_fitted | |
def fit(self, data): | |
if not self.is_fitted: | |
self._mean = data.mean().values | |
self._std = data.std().values | |
self._min = data.min().values | |
self._max = data.max().values | |
self._is_fitted = True | |
else: | |
info("Already fitted, skipping function.") | |
return self | |
def _transform(self, data: xr.DataArray): | |
return (data - self.mean) / (self.std + self.epsilon) | |
def _signum_log_transform(self, data: xr.DataArray): | |
data = data * self.sl_scale_factor | |
return np.sign(data) * np.log1p(np.abs(data)) | |
def signum_log_transform(self, data: xr.DataArray): | |
assert self.mean is not None and self.std is not None, "You must run fit first." | |
data = xr.apply_ufunc(self._signum_log_transform, data, dask="forbidden") | |
data = xr.apply_ufunc(self._transform, data, dask="forbidden") | |
return data | |
def transform(self, data: xr.DataArray): | |
assert self.mean is not None and self.std is not None, "You must run fit first." | |
data = xr.apply_ufunc(self._transform, data, dask="forbidden") | |
return data | |
def fit_transform(self, data: xr.DataArray): | |
self.fit(data) | |
return self.transform(data) | |
def inverse_transform(self, data): | |
if isinstance(data, torch.Tensor): | |
return data * ( | |
torch.Tensor([self.std]).to(data.device) | |
+ torch.Tensor([self.epsilon]).to(data.device) | |
) + torch.Tensor([self.mean]).to(data.device) | |
else: | |
return data * (self.std + self.epsilon) + self.mean | |
def inverse_signum_log_transform(self, data): | |
if isinstance(data, torch.Tensor): | |
return ( | |
torch.sign(data) | |
* torch.expm1(torch.abs(data)) | |
/ torch.Tensor([self.sl_scale_factor]).to(data.device) | |
) | |
else: | |
return np.sign(data) * np.expm1(np.abs(data)) / self.sl_scale_factor | |
def to_dict(self) -> dict: | |
return { | |
"base": self.__module__, | |
"class": self.__class__.__name__, | |
"epsilon": str(self.epsilon), | |
"mean": str(self.mean), | |
"std": str(self.std), | |
"is_fitted": self.is_fitted, | |
"min": str(self.min), | |
"max": str(self.max), | |
"sl_scale_factor": str(self.sl_scale_factor), | |
} | |
def from_dict(info: dict): | |
out = StandardScaler(epsilon=np.float32(info["epsilon"])) | |
out._mean = np.float32(info["mean"]) | |
out._std = np.float32(info["std"]) | |
out._is_fitted = info["is_fitted"] | |
out._min = np.float32(info["min"]) | |
out._max = np.float32(info["max"]) | |
out._sl_scale_factor = np.float32(info["sl_scale_factor"]) | |
return out | |
def reset(self): | |
self.__init__(self.epsilon) | |
def __str__(self): | |
return f"mean: {self.mean}, " f"std: {self.std}, " f"epsilon: {self.epsilon}" | |
class MaskUnits2D: | |
""" | |
Transformation that takes a tuple of numpy tensors and returns a sequence of mask units. These are generally in the form `channel, dim_0, dim_1, dim_2, ...`. The returned data is largely of shape `mask unit sequence, channel, lat, lon`. Masked patches are not returned. | |
The return values contain sets of indices. The indices indicate which mask units where dropped (masked) or not. The 1D indexing here simply relies on flattening the 2D space of mask units. The class methods `reconstruct` and `reconstruct_batch` show how to re-assemble the entire sequence. | |
""" | |
def __init__( | |
self, | |
n_lat_mu: int, | |
n_lon_mu: int, | |
padding, | |
seed=None, | |
mask_ratio_vals: float = 0.5, | |
mask_ratio_tars: float = 0.0, | |
n_lats: int = 361, | |
n_lons: int = 576, | |
): | |
self.n_lat_mu = n_lat_mu | |
self.n_lon_mu = n_lon_mu | |
self.mask_ratio_vals = mask_ratio_vals | |
self.mask_ratio_tars = mask_ratio_tars | |
self.padding = padding | |
self.n_lats = n_lats + padding[0][0] + padding[0][1] | |
self.n_lons = n_lons + padding[1][0] + padding[1][1] | |
if self.n_lats % n_lat_mu != 0: | |
raise ValueError( | |
f"Padded latitudes {self.n_lats} are not an integer multiple of the mask unit size {n_lat_mu}." | |
) | |
if self.n_lons % n_lon_mu != 0: | |
raise ValueError( | |
f"Padded longitudes {self.n_lons} are not an integer multiple of the mask unit size {n_lon_mu}." | |
) | |
self.mask_shape = (self.n_lats // self.n_lat_mu, self.n_lons // self.n_lon_mu) | |
self.rng = np.random.default_rng(seed=seed) | |
def n_units_masked(self, mask_type="vals"): | |
if mask_type == "vals": | |
return int(self.mask_ratio_vals * np.prod(self.mask_shape)) | |
elif mask_type == "tars": | |
return int(self.mask_ratio_tars * np.prod(self.mask_shape)) | |
else: | |
raise ValueError( | |
f"`{mask_type}` not an allowed value for `mask_type`. Use `vals` or `tars`." | |
) | |
def reconstruct( | |
idx_masked: torch.Tensor, | |
idx_unmasked: torch.Tensor, | |
data_masked: torch.Tensor, | |
data_unmasked: torch.Tensor, | |
) -> torch.Tensor: | |
""" | |
Reconstructs a tensor along the mask unit dimension. Non-batched version. | |
Args: | |
idx_masked: Tensor of shape `mask unit sequence`. | |
idx_unmasked: Tensor of shape `mask unit sequence`. | |
data_masked: Tensor of shape `mask unit sequence, ...`. Should have same size along mask unit sequence dimension as idx_masked. Dimensions beyond the first two, marked here as ... will typically be `local_sequence, channel` or `channel, lat, lon`. These dimensions should agree with data_unmasked. | |
data_unmasked: Tensor of shape `mask unit sequence, ...`. Should have same size along mask unit sequence dimension as idx_unmasked. Dimensions beyond the first two, marked here as ... will typically be `local_sequence, channel` or `channel, lat, lon`. These dimensions should agree with data_masked. | |
Returns: | |
Tensor of same shape as inputs data_masked and data_unmasked. I.e. `mask unit sequence, ...`. | |
""" | |
idx_total = torch.argsort(torch.cat([idx_masked, idx_unmasked], dim=0), dim=0) | |
idx_total = idx_total.reshape( | |
*idx_total.shape, | |
*[1 for _ in range(len(idx_total.shape), len(data_unmasked.shape))], | |
) | |
idx_total = idx_total.expand(*idx_total.shape[:1], *data_unmasked.shape[1:]) | |
data = torch.cat([data_masked, data_unmasked], dim=0) | |
data = torch.gather(data, dim=0, index=idx_total) | |
return data | |
def reconstruct_batch( | |
idx_masked: torch.Tensor, | |
idx_unmasked: torch.Tensor, | |
data_masked: torch.Tensor, | |
data_unmasked: torch.Tensor, | |
) -> torch.Tensor: | |
""" | |
Reconstructs a tensor along the mask unit dimension. Batched version. | |
Args: | |
idx_masked: Tensor of shape `batch, mask unit sequence`. | |
idx_unmasked: Tensor of shape `batch, mask unit sequence`. | |
data_masked: Tensor of shape `batch, mask unit sequence, ...`. Should have same size along mask unit sequence dimension as idx_masked. Dimensions beyond the first two, marked here as ... will typically be `local_sequence, channel` or `channel, lat, lon`. These dimensions should agree with data_unmasked. | |
data_unmasked: Tensor of shape `batch, mask unit sequence, ...`. Should have same size along mask unit sequence dimension as idx_unmasked. Dimensions beyond the first two, marked here as ... will typically be `local_sequence, channel` or `channel, lat, lon`. These dimensions should agree with data_masked. | |
Returns: | |
Tensor of same shape as inputs data_masked and data_unmasked. I.e. `batch, mask unit sequence, ...`. | |
""" | |
idx_total = torch.argsort(torch.cat([idx_masked, idx_unmasked], dim=1), dim=1) | |
idx_total = idx_total.reshape( | |
*idx_total.shape, | |
*[1 for _ in range(len(idx_total.shape), len(data_unmasked.shape))], | |
) | |
idx_total = idx_total.expand(*idx_total.shape[:2], *data_unmasked.shape[2:]) | |
data = torch.cat([data_masked, data_unmasked], dim=1) | |
data = torch.gather(data, dim=1, index=idx_total) | |
return data | |
def __call__(self, data: Tuple[np.array]) -> Tuple[torch.Tensor]: | |
""" | |
Args: | |
data: Tuple of numpy tensors. These are interpreted as `(sur_static, ulv_static, sur_vals, ulv_vals, sur_tars, ulv_tars)`. | |
Returns: | |
Tuple of torch tensors. If the target is unmasked (`mask_ratio_tars` is zero), the tuple contains | |
`(static, indices_masked_vals, indices_unmaked_vals, vals, tars)`. When targets are masked as well, we are dealing with | |
`(static, indices_masked_vals, indices_unmaked_vals, vals, indices_masked_tars, indices_unmasked_tars, tars)`. | |
Their shapes are as follows: | |
static: mask unit sequence, channel, lat, lon | |
indices_masked_vals: mask unit sequence | |
indices_unmaked_vals: mask unit sequence | |
vals: mask unit sequence, channel, lat, lon | |
tars: mask unit sequence, channel, lat, lon | |
""" | |
sur_static, ulv_static, sur_vals, ulv_vals, sur_tars, ulv_tars = data | |
sur_vals, ulv_vals = np.squeeze(sur_vals, axis=1), np.squeeze(ulv_vals, axis=1) | |
sur_tars, ulv_tars = np.squeeze(sur_tars, axis=1), np.squeeze(ulv_tars, axis=1) | |
vals = np.concatenate( | |
[ | |
sur_vals, | |
ulv_vals.reshape( | |
ulv_vals.shape[0] * ulv_vals.shape[1], *ulv_vals.shape[-2:] | |
), | |
], | |
axis=0, | |
) | |
tars = np.concatenate( | |
[ | |
sur_tars, | |
ulv_tars.reshape( | |
ulv_tars.shape[0] * ulv_tars.shape[1], *ulv_tars.shape[-2:] | |
), | |
], | |
axis=0, | |
) | |
padding = ((0, 0), *self.padding) | |
static = np.pad(sur_static, padding) | |
vals = np.pad(vals, padding) | |
tars = np.pad(tars, padding) | |
static = static.reshape( | |
static.shape[0], | |
static.shape[-2] // self.n_lat_mu, | |
self.n_lat_mu, | |
static.shape[-1] // self.n_lon_mu, | |
self.n_lon_mu, | |
).transpose(1, 3, 0, 2, 4) | |
vals = vals.reshape( | |
vals.shape[0], | |
vals.shape[-2] // self.n_lat_mu, | |
self.n_lat_mu, | |
vals.shape[-1] // self.n_lon_mu, | |
self.n_lon_mu, | |
).transpose(1, 3, 0, 2, 4) | |
tars = tars.reshape( | |
tars.shape[0], | |
tars.shape[-2] // self.n_lat_mu, | |
self.n_lat_mu, | |
tars.shape[-1] // self.n_lon_mu, | |
self.n_lon_mu, | |
).transpose(1, 3, 0, 2, 4) | |
maskable_indices = np.arange(np.prod(self.mask_shape)) | |
maskable_indices = self.rng.permutation(maskable_indices) | |
indices_masked_vals = maskable_indices[: self.n_units_masked()] | |
indices_unmasked_vals = maskable_indices[self.n_units_masked() :] | |
vals = vals.reshape(-1, *vals.shape[2:])[indices_unmasked_vals, :, :, :] | |
if self.mask_ratio_tars > 0.0: | |
maskable_indices = np.arange(np.prod(self.mask_shape)) | |
maskable_indices = self.rng.permutation(maskable_indices) | |
indices_masked_tars = maskable_indices[: self.n_units_masked("tars")] | |
indices_unmasked_tars = maskable_indices[self.n_units_masked("tars") :] | |
tars = tars.reshape(-1, *tars.shape[2:])[indices_unmasked_tars, :, :, :] | |
return_value = ( | |
torch.from_numpy(static).flatten(0, 1), | |
torch.from_numpy(indices_masked_vals), | |
torch.from_numpy(indices_unmasked_vals), | |
torch.from_numpy(vals), | |
torch.from_numpy(indices_masked_tars), | |
torch.from_numpy(indices_unmasked_tars), | |
torch.from_numpy(tars), | |
) | |
return return_value | |
else: | |
return_value = ( | |
torch.from_numpy(static).flatten(0, 1), | |
torch.from_numpy(indices_masked_vals), | |
torch.from_numpy(indices_unmasked_vals), | |
torch.from_numpy(vals), | |
torch.from_numpy(tars).flatten(0, 1), | |
) | |
return return_value | |