|
from sentence_transformers import SentenceTransformer |
|
from fastapi import FastAPI |
|
from pydantic import BaseModel |
|
import torch |
|
|
|
app = FastAPI() |
|
model_name = "meedan/paraphrase-filipino-mpnet-base-v2" |
|
model = SentenceTransformer(model_name) |
|
|
|
|
|
class TextInput(BaseModel): |
|
text: str |
|
|
|
|
|
@app.post("/embed") |
|
def embed_text(input: TextInput): |
|
with torch.no_grad(): |
|
embedding = model.encode([input.text])[0].tolist() |
|
return {"embedding": embedding} |
|
|
|
|
|
@app.get("/") |
|
def read_root(): |
|
return f"Encode text to numerical vectors using sentence transformer: {model_name}" |
|
|