googoo / app.py
johnpaulbin's picture
Create app.py
7f36089 verified
raw
history blame
1.72 kB
from huggingface_hub import hf_hub_download
from llama_cpp import Llama
import gradio as gr
# Download the model from Hugging Face
model_name = "johnpaulbin/articulate-V1-Q8_0-GGUF"
model_file = "articulate-V1-Q8_0.gguf" # Replace with the actual GGUF file name from the repository
model_path = hf_hub_download(repo_id=model_name, filename=model_file)
# Initialize the Llama model with llama-cpp-python
llm = Llama(
model_path=model_path,
n_ctx=1024, # Context length (adjust as needed)
n_threads=2, # Number of CPU threads
n_gpu_layers=0 # Run on CPU only (no GPU in free Spaces tier)
)
# Define the chat function for Gradio
def chat(message, history):
# Build the message list with history and current user input
messages = []
for user_msg, assistant_msg in history:
messages.append({"role": "user", "content": user_msg})
messages.append({"role": "assistant", "content": assistant_msg})
messages.append({"role": "user", "content": message})
# Perform inference with greedy decoding
response = llm.create_chat_completion(
messages=messages,
max_tokens=100, # Limit output length
top_k=1, # Greedy decoding: select the top token
temperature=0.01 # Low temperature for determinism (top_k=1 is sufficient)
)
# Extract and return the generated text
generated_text = response['choices'][0]['message']['content']
return generated_text
# Create the Gradio ChatInterface
iface = gr.ChatInterface(
fn=chat,
title="Articulate V1 Chatbot",
description="Chat with the Articulate V1 model (Llama 3-based) using greedy decoding."
)
# Launch the app
iface.launch()