chat_with_me / app.py
jonathanjordan21's picture
Update app.py
870f897 verified
import streamlit as st
from langchain_community.llms import HuggingFaceTextGenInference
import os
import io
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from langchain.schema import StrOutputParser
# from datetime import datetime
from datetime import datetime, timezone, timedelta
from custom_llm import CustomLLM, custom_chain_with_history
from typing import Optional
from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain_core.chat_history import BaseChatMessageHistory
from langchain.memory import ConversationBufferMemory#, PostgresChatMessageHistory
import psycopg2
import urllib.parse as up
os.environ['LANGCHAIN_TRACING_V2'] = "true"
API_TOKEN = os.getenv('HF_INFER_API')
# POSTGRE_URL = os.environ['POSTGRE_URL']
@st.cache_resource
def get_llm_chain():
return custom_chain_with_history(
llm=CustomLLM(repo_id="mistralai/Mixtral-8x7B-Instruct-v0.1", model_type='text-generation', api_token=API_TOKEN, stop=["\n<|","<|"], temperature=0.001),
# llm=CustomLLM(repo_id="google/gemma-7b", model_type='text-generation', api_token=API_TOKEN, stop=["\n<|","<|"], temperature=0.001),
# memory=st.session_state.memory.chat_memory,
memory=st.session_state.memory
)
# @st.cache_resource
# def get_db_connection(conn_url, password=None):
# url = up.urlparse(conn_url)
# conn = psycopg2.connect(
# database=url.path[1:],
# user=url.username,
# password=password if password is not None else url.password,
# host=url.hostname,
# port=url.port
# )
# print("Connection to database succesfull!")
# return conn
# @st.cache_resource
# def get_memory():
# return PostgresChatMessageHistory(connection_string=POSTGRE_URL, session_id=str(datetime.timestamp(datetime.now())))
# if 'conn' not in st.session_state:
# st.session_state.conn = get_db_connection(POSTGRE_URL)
# if 'cursor' not in st.session_state:
# st.session_state.cursor = st.session_state.conn.cursor()
if 'memory' not in st.session_state:
st.session_state['memory'] = ConversationBufferMemory(return_messages=True)
# st.session_state.memory = PostgresChatMessageHistory(connection_string=POSTGRE_URL, session_id=str(datetime.timestamp(datetime.now())))
# st.session_state.memory = get_memory()
st.session_state.memory.chat_memory.add_ai_message("Hello, My name is Jonathan Jordan. You can call me Jojo. How can I help you today?")
# st.session_state.memory.add_ai_message("Hello, My name is Jonathan Jordan. You can call me Jojo. How can I help you today?")
if 'chain' not in st.session_state:
# st.session_state['chain'] = custom_chain_with_history(
# llm=CustomLLM(repo_id="mistralai/Mixtral-8x7B-Instruct-v0.1", model_type='text-generation', api_token=API_TOKEN, stop=["\n<|","<|"], temperature=0.001),
# memory=st.session_state.memory.chat_memory,
# # memory=st.session_state.memory
# )
st.session_state['chain'] = get_llm_chain()
st.title("Chat With Me")
st.subheader("by Jonathan Jordan")
st.markdown("""<p style="color: yellow;">Note : This conversation will be recorded in our private Database, thank you :)</p>""", unsafe_allow_html=True)
# Initialize chat history
if "messages" not in st.session_state:
st.session_state.messages = [{"role":"assistant", "content":"Hello, My name is Jonathan Jordan. You can call me Jojo. How can I help you today?"}]
# Display chat messages from history on app rerun
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
# React to user input
if prompt := st.chat_input("Ask me anything.."):
# Display user message in chat message container
st.chat_message("User").markdown(prompt)
# Add user message to chat history
st.session_state.messages.append({"role": "User", "content": prompt})
response = st.session_state.chain.invoke({"question":prompt, "memory":st.session_state.memory}).split("\n<|")[0]
# Display assistant response in chat message container
with st.chat_message("assistant"):
st.markdown(response)
# st.session_state.memory.add_user_message(prompt)
# st.session_state.memory.add_ai_message(response)
st.session_state.memory.save_context({"question":prompt}, {"output":response})
st.session_state.memory.chat_memory.messages = st.session_state.memory.chat_memory.messages[-15:]
# Add assistant response to chat history
st.session_state.messages.append({"role": "assistant", "content": response})
try:
timestamp = datetime.now(timezone.utc) + timedelta(hours=7)
chat_text = f"Timestamp: {timestamp}\nUser Input: {prompt}\nChatbot Response: {response}\n\n"
text_file = io.StringIO(chat_text) # Use io.StringIO
data = {
"text_content": [chat_text] # Store the raw text
}
dataset = Dataset.from_dict(data)
# dataset_name = "your_dataset_name" # Replace with your desired dataset name
# dataset_name = os.environ["DB_NAME"]
dataset_name = "chat_with_me_history"
repo_id = f"jonathanjordan21/{dataset_name}" # Full repo ID
dataset.push_to_hub(
repo_id=repo_id,
private=True, # Set to False if you want it to be public
# token="your_huggingface_token", # Replace with your token
token=API_TOKEN
)
print(f"Chat history added to Hugging Face dataset: {repo_id}")
except Exception as e:
print("ERROR!!!\n", str(e))
print("User Input :", prompt)
print("Chatbot Response :", response)
# # Insert data into the table
# try :
# try :
# cur = st.session_state.conn.cursor()
# except:
# get_db_connection.clear()
# st.session_state.conn = get_db_connection(POSTGRE_URL)
# cur = st.session_state.conn.cursor()
# cur.execute(
# f"INSERT INTO chat_history (input_text, response_text, created_at) VALUES (%s, %s, %s)",
# (prompt, response, datetime.now(timezone.utc) + timedelta(hours=7))
# )
# # Commit the transaction
# st.session_state.conn.commit()
# cur.close()
# except Exception as e:
# print("ERROR!!!\n", str(e))
# print("User Input :", prompt)
# print("Chatbot Response :", response)