Spaces:
Sleeping
Sleeping
""" Enhanced Hybrid Agent Evaluation Runner""" | |
import os | |
import inspect | |
import gradio as gr | |
import requests | |
import pandas as pd | |
from langchain_core.messages import HumanMessage | |
from agent import HybridLangGraphAgnoSystem | |
# --- Constants --- | |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" | |
# --- Enhanced Basic Agent Definition --- | |
class BasicAgent: | |
"""A hybrid LangGraph + Agno agent with performance optimization.""" | |
def __init__(self): | |
print("BasicAgent initialized with Hybrid LangGraph + Agno System.") | |
self.hybrid_system = HybridLangGraphAgnoSystem() | |
def __call__(self, question: str) -> str: | |
print(f"Agent received question: {question}") | |
try: | |
# Process query using hybrid system | |
result = self.hybrid_system.process_query(question) | |
# Extract final answer | |
answer = result.get("answer", "No response generated") | |
# Clean up the answer - extract only final answer if present | |
if "FINAL ANSWER:" in answer: | |
final_answer = answer.split("FINAL ANSWER:")[-1].strip() | |
else: | |
final_answer = answer.strip() | |
# Log performance metrics for debugging | |
metrics = result.get("performance_metrics", {}) | |
provider = result.get("provider_used", "Unknown") | |
processing_time = metrics.get("total_time", 0) | |
print(f"Provider used: {provider}, Processing time: {processing_time:.2f}s") | |
return final_answer | |
except Exception as e: | |
print(f"Error in agent processing: {e}") | |
return f"Error: {str(e)}" | |
def run_and_submit_all(profile: gr.OAuthProfile | None): | |
""" | |
Fetches all questions, runs the Enhanced Hybrid Agent on them, submits all answers, | |
and displays the results with performance metrics. | |
""" | |
# --- Determine HF Space Runtime URL and Repo URL --- | |
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code | |
if profile: | |
username= f"{profile.username}" | |
print(f"User logged in: {username}") | |
else: | |
print("User not logged in.") | |
return "Please Login to Hugging Face with the button.", None | |
api_url = DEFAULT_API_URL | |
questions_url = f"{api_url}/questions" | |
submit_url = f"{api_url}/submit" | |
# 1. Instantiate Enhanced Hybrid Agent | |
try: | |
agent = BasicAgent() | |
print("β Hybrid LangGraph + Agno Agent initialized successfully") | |
except Exception as e: | |
print(f"β Error instantiating hybrid agent: {e}") | |
return f"Error initializing hybrid agent: {e}", None | |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" | |
print(f"π Agent code repository: {agent_code}") | |
# 2. Fetch Questions | |
print(f"π₯ Fetching questions from: {questions_url}") | |
try: | |
response = requests.get(questions_url, timeout=15) | |
response.raise_for_status() | |
questions_data = response.json() | |
if not questions_data: | |
print("β Fetched questions list is empty.") | |
return "Fetched questions list is empty or invalid format.", None | |
print(f"β Fetched {len(questions_data)} questions successfully.") | |
except requests.exceptions.RequestException as e: | |
print(f"β Error fetching questions: {e}") | |
return f"Error fetching questions: {e}", None | |
except Exception as e: | |
print(f"β An unexpected error occurred fetching questions: {e}") | |
return f"An unexpected error occurred fetching questions: {e}", None | |
# 3. Run Enhanced Hybrid Agent with Performance Tracking | |
results_log = [] | |
answers_payload = [] | |
performance_stats = { | |
"langgraph_math": 0, | |
"agno_research": 0, | |
"langgraph_retrieval": 0, | |
"agno_general": 0, | |
"errors": 0, | |
"total_processing_time": 0 | |
} | |
print(f"π Running Enhanced Hybrid Agent on {len(questions_data)} questions...") | |
for i, item in enumerate(questions_data, 1): | |
task_id = item.get("task_id") | |
question_text = item.get("question") | |
if not task_id or question_text is None: | |
print(f"β οΈ Skipping item {i} with missing task_id or question: {item}") | |
continue | |
print(f"π Processing question {i}/{len(questions_data)}: {task_id}") | |
try: | |
# Get detailed result from hybrid system | |
detailed_result = agent.hybrid_system.process_query(question_text) | |
submitted_answer = detailed_result.get("answer", "No response") | |
# Extract final answer | |
if "FINAL ANSWER:" in submitted_answer: | |
clean_answer = submitted_answer.split("FINAL ANSWER:")[-1].strip() | |
else: | |
clean_answer = submitted_answer.strip() | |
# Track performance metrics | |
provider = detailed_result.get("provider_used", "Unknown") | |
processing_time = detailed_result.get("performance_metrics", {}).get("total_time", 0) | |
# Update performance stats | |
if "LangGraph" in provider: | |
if "Math" in provider: | |
performance_stats["langgraph_math"] += 1 | |
else: | |
performance_stats["langgraph_retrieval"] += 1 | |
elif "Agno" in provider: | |
if "Research" in provider: | |
performance_stats["agno_research"] += 1 | |
else: | |
performance_stats["agno_general"] += 1 | |
performance_stats["total_processing_time"] += processing_time | |
answers_payload.append({"task_id": task_id, "submitted_answer": clean_answer}) | |
results_log.append({ | |
"Task ID": task_id, | |
"Question": question_text[:100] + "..." if len(question_text) > 100 else question_text, | |
"Submitted Answer": clean_answer, | |
"Provider": provider, | |
"Processing Time (s)": f"{processing_time:.2f}" | |
}) | |
print(f"β Question {i} processed successfully using {provider}") | |
except Exception as e: | |
print(f"β Error running agent on task {task_id}: {e}") | |
performance_stats["errors"] += 1 | |
results_log.append({ | |
"Task ID": task_id, | |
"Question": question_text[:100] + "..." if len(question_text) > 100 else question_text, | |
"Submitted Answer": f"AGENT ERROR: {e}", | |
"Provider": "Error", | |
"Processing Time (s)": "0.00" | |
}) | |
if not answers_payload: | |
print("β Agent did not produce any answers to submit.") | |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) | |
# 4. Performance Summary | |
avg_processing_time = performance_stats["total_processing_time"] / len(answers_payload) if answers_payload else 0 | |
performance_summary = f""" | |
π Performance Summary: | |
β’ LangGraph Math: {performance_stats['langgraph_math']} queries | |
β’ Agno Research: {performance_stats['agno_research']} queries | |
β’ LangGraph Retrieval: {performance_stats['langgraph_retrieval']} queries | |
β’ Agno General: {performance_stats['agno_general']} queries | |
β’ Errors: {performance_stats['errors']} queries | |
β’ Average Processing Time: {avg_processing_time:.2f}s | |
β’ Total Processing Time: {performance_stats['total_processing_time']:.2f}s | |
""" | |
print(performance_summary) | |
# 5. Prepare Submission | |
submission_data = { | |
"username": username.strip(), | |
"agent_code": agent_code, | |
"answers": answers_payload | |
} | |
status_update = f"π― Hybrid Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..." | |
print(status_update) | |
# 6. Submit Results | |
print(f"π€ Submitting {len(answers_payload)} answers to: {submit_url}") | |
try: | |
response = requests.post(submit_url, json=submission_data, timeout=120) # Increased timeout | |
response.raise_for_status() | |
result_data = response.json() | |
final_status = ( | |
f"π Submission Successful!\n" | |
f"π€ User: {result_data.get('username')}\n" | |
f"π Overall Score: {result_data.get('score', 'N/A')}% " | |
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" | |
f"π¬ Message: {result_data.get('message', 'No message received.')}\n" | |
f"{performance_summary}" | |
) | |
print("β Submission successful.") | |
results_df = pd.DataFrame(results_log) | |
return final_status, results_df | |
except requests.exceptions.HTTPError as e: | |
error_detail = f"Server responded with status {e.response.status_code}." | |
try: | |
error_json = e.response.json() | |
error_detail += f" Detail: {error_json.get('detail', e.response.text)}" | |
except requests.exceptions.JSONDecodeError: | |
error_detail += f" Response: {e.response.text[:500]}" | |
status_message = f"β Submission Failed: {error_detail}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
except requests.exceptions.Timeout: | |
status_message = "β Submission Failed: The request timed out." | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
except requests.exceptions.RequestException as e: | |
status_message = f"β Submission Failed: Network error - {e}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
except Exception as e: | |
status_message = f"β An unexpected error occurred during submission: {e}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
# --- Enhanced Gradio Interface --- | |
with gr.Blocks(title="Enhanced Hybrid Agent Evaluation") as demo: | |
gr.Markdown("# π Enhanced Hybrid LangGraph + Agno Agent Evaluation Runner") | |
gr.Markdown( | |
""" | |
## π― **Advanced AI Agent System** | |
This evaluation runner uses a **Hybrid LangGraph + Agno Agent System** that combines the best of both frameworks: | |
### π§ **Intelligent Routing System** | |
- **π’ Mathematical Queries** β LangGraph (Groq Llama 3.3 70B) - *Optimized for speed* | |
- **π Complex Research** β Agno (Gemini 2.0 Flash-Lite) - *Optimized for reasoning* | |
- **π Factual Retrieval** β LangGraph + FAISS Vector Store - *Optimized for accuracy* | |
- **π General Queries** β Agno Multi-Agent System - *Optimized for comprehensiveness* | |
### β‘ **Performance Features** | |
- **Rate Limiting**: Intelligent rate management for free tier models | |
- **Caching**: Performance optimization with query caching | |
- **Fallback Systems**: Automatic provider switching on failures | |
- **Performance Tracking**: Real-time metrics and provider usage stats | |
### π **Tools & Capabilities** | |
- Mathematical calculations (add, subtract, multiply, divide, modulus) | |
- Web search (Tavily, Wikipedia, ArXiv) | |
- FAISS vector database for similar question retrieval | |
- Memory persistence across sessions | |
--- | |
**Instructions:** | |
1. π Log in to your Hugging Face account using the button below | |
2. π Click 'Run Evaluation & Submit All Answers' to start the evaluation | |
3. π Monitor real-time performance metrics and provider usage | |
4. π View your final score and detailed results | |
**Note:** The hybrid system automatically selects the optimal AI provider for each question type to maximize both speed and accuracy. | |
""" | |
) | |
gr.LoginButton() | |
with gr.Row(): | |
run_button = gr.Button( | |
"π Run Evaluation & Submit All Answers", | |
variant="primary", | |
size="lg" | |
) | |
status_output = gr.Textbox( | |
label="π Run Status / Submission Result", | |
lines=10, | |
interactive=False, | |
placeholder="Status updates will appear here..." | |
) | |
results_table = gr.DataFrame( | |
label="π Questions, Answers & Performance Metrics", | |
wrap=True, | |
height=400 | |
) | |
run_button.click( | |
fn=run_and_submit_all, | |
outputs=[status_output, results_table] | |
) | |
# Add footer with system info | |
gr.Markdown( | |
""" | |
--- | |
### π§ **System Information** | |
- **Primary Models**: Groq Llama 3.3 70B, Gemini 2.0 Flash-Lite, NVIDIA Llama 3.1 70B | |
- **Frameworks**: LangGraph + Agno Hybrid Architecture | |
- **Vector Store**: FAISS with NVIDIA Embeddings | |
- **Rate Limiting**: Advanced rate management with exponential backoff | |
- **Memory**: Persistent agent memory with session summaries | |
""" | |
) | |
if __name__ == "__main__": | |
print("\n" + "="*80) | |
print("π ENHANCED HYBRID AGENT EVALUATION RUNNER") | |
print("="*80) | |
# Check for environment variables | |
space_host_startup = os.getenv("SPACE_HOST") | |
space_id_startup = os.getenv("SPACE_ID") | |
if space_host_startup: | |
print(f"β SPACE_HOST found: {space_host_startup}") | |
print(f" π Runtime URL: https://{space_host_startup}.hf.space") | |
else: | |
print("βΉοΈ SPACE_HOST environment variable not found (running locally?).") | |
if space_id_startup: | |
print(f"β SPACE_ID found: {space_id_startup}") | |
print(f" π Repo URL: https://huggingface.co/spaces/{space_id_startup}") | |
print(f" π³ Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main") | |
else: | |
print("βΉοΈ SPACE_ID environment variable not found (running locally?).") | |
print("\nπ― System Features:") | |
print(" β’ Hybrid LangGraph + Agno Architecture") | |
print(" β’ Intelligent Query Routing") | |
print(" β’ Performance Optimization") | |
print(" β’ Advanced Rate Limiting") | |
print(" β’ FAISS Vector Database") | |
print(" β’ Multi-Provider Fallbacks") | |
print("\n" + "="*80) | |
print("π Launching Enhanced Gradio Interface...") | |
print("="*80 + "\n") | |
demo.launch(debug=True, share=False) | |