Spaces:
Sleeping
Sleeping
import os | |
import gradio as gr | |
from dotenv import load_dotenv | |
from langgraph.graph import START, StateGraph, MessagesState | |
from langgraph.prebuilt import tools_condition, ToolNode | |
from langchain_google_genai import ChatGoogleGenerativeAI | |
from langchain_groq import ChatGroq | |
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint | |
from langchain_community.embeddings import HuggingFaceEmbeddings | |
from langchain_community.tools.tavily_search import TavilySearchResults | |
from langchain_community.document_loaders import WikipediaLoader, ArxivLoader | |
from langchain_community.vectorstores import SupabaseVectorStore | |
from langchain_core.messages import SystemMessage, HumanMessage | |
from langchain_core.tools import tool | |
from supabase import create_client, Client | |
# Load environment variables | |
load_dotenv() | |
# Tool definitions remain unchanged | |
def multiply(a: int, b: int) -> int: | |
return a * b | |
def add(a: int, b: int) -> int: | |
return a + b | |
def subtract(a: int, b: int) -> int: | |
return a - b | |
def divide(a: int, b: int) -> int: | |
if b == 0: | |
raise ValueError("Cannot divide by zero.") | |
return a / b | |
def modulus(a: int, b: int) -> int: | |
return a % b | |
def wiki_search(query: str) -> str: | |
search_docs = WikipediaLoader(query=query, load_max_docs=2).load() | |
formatted_search_docs = "\n\n---\n\n".join( | |
[f'<Document source="{doc.metadata["source"]}"/>\n{doc.page_content}\n</Document>' | |
for doc in search_docs]) | |
return {"wiki_results": formatted_search_docs} | |
def web_search(query: str) -> str: | |
search_docs = TavilySearchResults(max_results=3).invoke(query) | |
formatted_search_docs = "\n\n---\n\n".join( | |
[f'<Document source="{doc.metadata["source"]}"/>\n{doc.page_content}\n</Document>' | |
for doc in search_docs]) | |
return {"web_results": formatted_search_docs} | |
def arvix_search(query: str) -> str: | |
search_docs = ArxivLoader(query=query, load_max_docs=3).load() | |
formatted_search_docs = "\n\n---\n\n".join( | |
[f'<Document source="{doc.metadata["source"]}"/>\n{doc.page_content[:1000]}\n</Document>' | |
for doc in search_docs]) | |
return {"arvix_results": formatted_search_docs} | |
# System prompt definition | |
SYSTEM_PROMPT = """You are a helpful assistant. For every question, reply with only the answer—no explanation, | |
no units, and no extra words. If the answer is a number, just return the number. | |
If it is a word or phrase, return only that. If it is a list, return a comma-separated list with no extra words. | |
Do not include any prefix, suffix, or explanation.""" | |
sys_msg = SystemMessage(content=SYSTEM_PROMPT) | |
# Initialize vector store | |
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") | |
supabase: Client = create_client( | |
os.environ["SUPABASE_URL"], | |
os.environ["SUPABASE_SERVICE_KEY"] | |
) | |
vector_store = SupabaseVectorStore( | |
client=supabase, | |
embedding=embeddings, | |
table_name="documents", | |
) | |
tools = [multiply, add, subtract, divide, modulus, | |
wiki_search, web_search, arvix_search] | |
# Build graph function with multi-provider support | |
def build_graph(provider: str = "groq"): | |
# Provider selection | |
if provider == "google": | |
llm = ChatGoogleGenerativeAI( | |
model="gemini-2.0-flash", | |
temperature=0, | |
api_key=os.getenv("GOOGLE_API_KEY") | |
) | |
elif provider == "groq": | |
llm = ChatGroq( | |
model="llama3-70b-8192", | |
temperature=0, | |
api_key=os.getenv("GROQ_API_KEY") | |
) | |
elif provider == "huggingface": | |
llm = ChatHuggingFace( | |
llm=HuggingFaceEndpoint( | |
endpoint_url="https://api-inference.huggingface.co/models/mistralai/Mistral-7B-Instruct-v0.2", | |
temperature=0, | |
api_key=os.getenv("HF_API_KEY") | |
) | |
) | |
else: | |
raise ValueError("Invalid provider. Choose 'google', 'groq' or 'huggingface'.") | |
llm_with_tools = llm.bind_tools(tools) | |
# Graph nodes | |
def retriever(state: MessagesState): | |
similar_question = vector_store.similarity_search(state["messages"][-1].content, k=1) | |
if similar_question: | |
example_msg = HumanMessage(content=f"Similar reference: {similar_question[0].page_content[:200]}...") | |
return {"messages": state["messages"] + [example_msg]} | |
return {"messages": state["messages"]} | |
def assistant(state: MessagesState): | |
return {"messages": [llm_with_tools.invoke(state["messages"])]} | |
# Build graph | |
builder = StateGraph(MessagesState) | |
builder.add_node("retriever", retriever) | |
builder.add_node("assistant", assistant) | |
builder.add_node("tools", ToolNode(tools)) | |
builder.add_edge(START, "retriever") | |
builder.add_edge("retriever", "assistant") | |
builder.add_conditional_edges( | |
"assistant", | |
tools_condition, | |
) | |
builder.add_edge("tools", "assistant") | |
return builder.compile() | |
# Gradio interface | |
def run_agent(question, provider): | |
try: | |
graph = build_graph(provider) | |
messages = [HumanMessage(content=question)] | |
result = graph.invoke({"messages": messages}) | |
final_answer = result["messages"][-1].content | |
return final_answer | |
except Exception as e: | |
return f"Error: {str(e)}" | |
# Create Gradio interface | |
with gr.Blocks() as demo: | |
gr.Markdown("## LangGraph Multi-Provider Agent") | |
provider = gr.Dropdown( | |
choices=["groq", "google", "huggingface"], | |
value="groq", | |
label="LLM Provider" | |
) | |
question = gr.Textbox(label="Your Question") | |
submit_btn = gr.Button("Run Agent") | |
output = gr.Textbox(label="Agent Response", interactive=False) | |
submit_btn.click( | |
fn=run_agent, | |
inputs=[question, provider], | |
outputs=output | |
) | |
if __name__ == "__main__": | |
demo.launch() | |