jsbeaudry's picture
Update app.py
aed667b verified
raw
history blame
1.34 kB
from transformers import pipeline
import gradio as gr
from unsloth import FastModel
from transformers import WhisperForConditionalGeneration
import torch
model, tokenizer = FastModel.from_pretrained(
model_name = "jsbeaudry/creole-speech-to-text",
dtype = None, # Leave as None for auto detection
load_in_4bit = False, # Set to True to do 4bit quantization which reduces memory
auto_model = WhisperForConditionalGeneration,
whisper_language = "Haitian",
whisper_task = "transcribe",
# token = "hf_...", # use one if using gated models like meta-llama/Llama-2-7b-hf
)
# Reuse the previously created pipeline object
# pipe = pipeline(model) # This line caused the error
# Initialize the pipeline correctly
pipe = pipeline(
"automatic-speech-recognition",
model=model,
tokenizer=tokenizer.tokenizer,
feature_extractor=tokenizer.feature_extractor,
processor=tokenizer,
return_language=True,
torch_dtype=torch.float16
)
def transcribe(audio):
# Use the 'pipe' pipeline
text = pipe(audio)["text"]
return text
iface = gr.Interface(
fn=transcribe,
inputs=gr.Audio(type="filepath"),
outputs="text",
title="Whisper medium Creole",
description="Realtime demo for Haitian Creole speech recognition using a fine-tuned medium small model.",
)
iface.launch()