Spaces:
Running
Running
Enhance explanation via prompt engineering
#5
by
angelicaporto
- opened
app.py
CHANGED
@@ -8,50 +8,51 @@ import re
|
|
8 |
import pandas as pd # type: ignore
|
9 |
from dotenv import load_dotenv # type: ignore # Para cambios locales
|
10 |
from supabase import create_client, Client # type: ignore
|
11 |
-
from pandasai import Agent
|
12 |
|
13 |
# from pandasai import SmartDataframe # type: ignore
|
14 |
-
from pandasai
|
|
|
15 |
from pandasai import Agent
|
16 |
import matplotlib.pyplot as plt
|
|
|
17 |
|
18 |
# ---------------------------------------------------------------------------------
|
19 |
# Funciones auxiliares
|
20 |
# ---------------------------------------------------------------------------------
|
21 |
|
22 |
|
23 |
-
# Ejemplo de prompt generado:
|
24 |
-
# generate_graph_prompt("Germany", "France", "fertility rate", 2020, 2030)
|
25 |
def generate_graph_prompt(user_query):
|
26 |
prompt = f"""
|
27 |
-
|
28 |
|
29 |
-
|
30 |
|
31 |
-
|
32 |
-
|
33 |
-
|
|
|
|
|
34 |
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
|
41 |
-
|
42 |
-
result = {{
|
43 |
-
"type": "plot",
|
44 |
-
"value": "temp_chart.png",
|
45 |
-
"explanation": explanation
|
46 |
-
}}
|
47 |
|
48 |
-
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
-
|
51 |
-
|
52 |
return prompt
|
53 |
|
54 |
-
#
|
55 |
|
56 |
# ---------------------------------------------------------------------------------
|
57 |
# Configuración de conexión a Supabase
|
@@ -101,20 +102,18 @@ def load_data(table):
|
|
101 |
# Cargar datos iniciales
|
102 |
# ---------------------------------------------------------------------------------
|
103 |
|
104 |
-
# # Cargar datos desde la tabla "labor"
|
105 |
-
data = load_data("labor")
|
106 |
-
|
107 |
# TODO: La idea es luego usar todas las tablas, cuando ya funcione.
|
108 |
-
# Se puede si el modelo funciona con las gráficas, sino que toca mejorarlo
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
# population_data = load_data("population")
|
113 |
-
# predictions_data = load_data("predictions")
|
114 |
|
|
|
115 |
|
116 |
# ---------------------------------------------------------------------------------
|
117 |
-
# Inicializar
|
118 |
# ---------------------------------------------------------------------------------
|
119 |
|
120 |
# ollama_llm = LocalLLM(api_base="http://localhost:11434/v1",
|
@@ -124,43 +123,66 @@ data = load_data("labor")
|
|
124 |
|
125 |
lm_studio_llm = LocalLLM(api_base="http://localhost:1234/v1") # el modelo es gemma-3-12b-it-qat
|
126 |
|
127 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
|
129 |
# ---------------------------------------------------------------------------------
|
130 |
# Configuración de la app en Streamlit
|
131 |
# ---------------------------------------------------------------------------------
|
132 |
|
133 |
# Título de la app
|
134 |
-
st.title("
|
135 |
|
136 |
# TODO: Poner instrucciones al usuario sobre cómo hacer un muy buen prompt (sin tecnisismos, pensando en el usuario final)
|
137 |
|
138 |
-
|
139 |
# Entrada de usuario para describir el gráfico
|
140 |
user_input = st.text_input("What graphics do you have in mind")
|
141 |
generate_button = st.button("Generate")
|
142 |
|
143 |
-
# Procesar el input del usuario con PandasAI
|
144 |
if generate_button and user_input:
|
145 |
with st.spinner('Generating answer...'):
|
146 |
try:
|
|
|
147 |
prompt = generate_graph_prompt(user_input)
|
|
|
|
|
|
|
|
|
148 |
answer = agent.chat(prompt)
|
149 |
-
explanation = agent.explain()
|
150 |
print(f"\nAnswer type: {type(answer)}\n") # Verificar tipo de objeto
|
151 |
print(f"\nAnswer content: {answer}\n") # Inspeccionar contenido de la respuesta
|
152 |
-
print(f"\
|
153 |
-
|
|
|
|
|
|
|
|
|
|
|
154 |
|
155 |
if isinstance(answer, str) and os.path.isfile(answer):
|
156 |
# Si el output es una ruta válida a imagen
|
157 |
im = plt.imread(answer)
|
158 |
st.image(im)
|
159 |
os.remove(answer) # Limpiar archivo temporal
|
160 |
-
|
|
|
|
|
161 |
else:
|
162 |
# Si no es una ruta válida, mostrar como texto
|
163 |
-
st.markdown(str(answer))
|
164 |
|
165 |
except Exception as e:
|
166 |
st.error(f"Error generating answer: {e}")
|
|
|
8 |
import pandas as pd # type: ignore
|
9 |
from dotenv import load_dotenv # type: ignore # Para cambios locales
|
10 |
from supabase import create_client, Client # type: ignore
|
|
|
11 |
|
12 |
# from pandasai import SmartDataframe # type: ignore
|
13 |
+
from pandasai import SmartDatalake # type: ignore # Porque ya usamos más de un df (más de una tabla de nuestra db)
|
14 |
+
from pandasai.llm.local_llm import LocalLLM # type: ignore
|
15 |
from pandasai import Agent
|
16 |
import matplotlib.pyplot as plt
|
17 |
+
import time
|
18 |
|
19 |
# ---------------------------------------------------------------------------------
|
20 |
# Funciones auxiliares
|
21 |
# ---------------------------------------------------------------------------------
|
22 |
|
23 |
|
|
|
|
|
24 |
def generate_graph_prompt(user_query):
|
25 |
prompt = f"""
|
26 |
+
You are a senior data scientist analyzing European labor force data.
|
27 |
|
28 |
+
Given the user's request: "{user_query}"
|
29 |
|
30 |
+
1. Plot the relevant data using matplotlib:
|
31 |
+
- Use `df.query("geo == 'X'")` to filter the country, instead of chained comparisons.
|
32 |
+
- Avoid using filters like `df[df['geo'] == 'Germany']`.
|
33 |
+
- Include clear axis labels and a descriptive title.
|
34 |
+
- Save the plot as an image file (e.g., temp_chart.png).
|
35 |
|
36 |
+
2. After plotting, write a **concise analytical summary** of the trend based on those 5 years. The summary should:
|
37 |
+
- Identify the **year with the largest increase** and the percent change.
|
38 |
+
- Identify the **year with the largest decrease** and the percent change.
|
39 |
+
- Provide a **brief overall trend interpretation** (e.g., steady growth, fluctuating, recovery, etc.).
|
40 |
+
- Avoid listing every year individually, summarize intelligently.
|
41 |
|
42 |
+
3. Store the summary in a variable named `explanation`.
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
+
4. Return a result dictionary structured as follows:
|
45 |
+
result = {{
|
46 |
+
"type": "plot",
|
47 |
+
"value": "temp_chart.png",
|
48 |
+
"explanation": explanation
|
49 |
+
}}
|
50 |
|
51 |
+
IMPORTANT: Use only the data available in the input DataFrame.
|
52 |
+
"""
|
53 |
return prompt
|
54 |
|
55 |
+
#TODO: Continuar mejorando el prompt
|
56 |
|
57 |
# ---------------------------------------------------------------------------------
|
58 |
# Configuración de conexión a Supabase
|
|
|
102 |
# Cargar datos iniciales
|
103 |
# ---------------------------------------------------------------------------------
|
104 |
|
|
|
|
|
|
|
105 |
# TODO: La idea es luego usar todas las tablas, cuando ya funcione.
|
106 |
+
# Se puede si el modelo funciona con las gráficas, sino que toca mejorarlo porque serían consultas más complejas.
|
107 |
+
|
108 |
+
labor_data = load_data("labor")
|
109 |
+
fertility_data = load_data("fertility")
|
110 |
# population_data = load_data("population")
|
111 |
+
# predictions_data = load_data("predictions")
|
112 |
|
113 |
+
# TODO: Buscar la forma de disminuir la latencia (muchos datos = mucha latencia)
|
114 |
|
115 |
# ---------------------------------------------------------------------------------
|
116 |
+
# Inicializar LLM desde Ollama con PandasAI
|
117 |
# ---------------------------------------------------------------------------------
|
118 |
|
119 |
# ollama_llm = LocalLLM(api_base="http://localhost:11434/v1",
|
|
|
123 |
|
124 |
lm_studio_llm = LocalLLM(api_base="http://localhost:1234/v1") # el modelo es gemma-3-12b-it-qat
|
125 |
|
126 |
+
# sdl = SmartDatalake([labor_data, fertility_data, population_data, predictions_data], config={"llm": ollama_llm}) # DataFrame PandasAI-ready.
|
127 |
+
# sdl = SmartDatalake([labor_data, fertility_data], config={"llm": ollama_llm})
|
128 |
+
|
129 |
+
# agent = Agent([labor_data], config={"llm": lm_studio_llm}) # TODO: Probar Agent con multiples dfs
|
130 |
+
agent = Agent(
|
131 |
+
[
|
132 |
+
labor_data,
|
133 |
+
fertility_data
|
134 |
+
],
|
135 |
+
config={
|
136 |
+
"llm": lm_studio_llm,
|
137 |
+
"enable_cache": False,
|
138 |
+
"enable_filter_extraction": False # evita errores de parseo
|
139 |
+
}
|
140 |
+
)
|
141 |
|
142 |
# ---------------------------------------------------------------------------------
|
143 |
# Configuración de la app en Streamlit
|
144 |
# ---------------------------------------------------------------------------------
|
145 |
|
146 |
# Título de la app
|
147 |
+
st.title("Europe GraphGen :blue[Graph generator] :flag-eu:")
|
148 |
|
149 |
# TODO: Poner instrucciones al usuario sobre cómo hacer un muy buen prompt (sin tecnisismos, pensando en el usuario final)
|
150 |
|
|
|
151 |
# Entrada de usuario para describir el gráfico
|
152 |
user_input = st.text_input("What graphics do you have in mind")
|
153 |
generate_button = st.button("Generate")
|
154 |
|
|
|
155 |
if generate_button and user_input:
|
156 |
with st.spinner('Generating answer...'):
|
157 |
try:
|
158 |
+
print(f"\nGenerating prompt...\n")
|
159 |
prompt = generate_graph_prompt(user_input)
|
160 |
+
print(f"\nPrompt generated\n")
|
161 |
+
|
162 |
+
start_time = time.time()
|
163 |
+
|
164 |
answer = agent.chat(prompt)
|
|
|
165 |
print(f"\nAnswer type: {type(answer)}\n") # Verificar tipo de objeto
|
166 |
print(f"\nAnswer content: {answer}\n") # Inspeccionar contenido de la respuesta
|
167 |
+
print(f"\nFull result: {agent.last_result}\n")
|
168 |
+
|
169 |
+
full_result = agent.last_result
|
170 |
+
explanation = full_result.get("explanation", "")
|
171 |
+
|
172 |
+
elapsed_time = time.time() - start_time
|
173 |
+
print(f"\nExecution time: {elapsed_time:.2f} seconds\n")
|
174 |
|
175 |
if isinstance(answer, str) and os.path.isfile(answer):
|
176 |
# Si el output es una ruta válida a imagen
|
177 |
im = plt.imread(answer)
|
178 |
st.image(im)
|
179 |
os.remove(answer) # Limpiar archivo temporal
|
180 |
+
|
181 |
+
if explanation:
|
182 |
+
st.markdown(f"**Explanation:** {explanation}")
|
183 |
else:
|
184 |
# Si no es una ruta válida, mostrar como texto
|
185 |
+
st.markdown(str(answer))
|
186 |
|
187 |
except Exception as e:
|
188 |
st.error(f"Error generating answer: {e}")
|