Spaces:
Sleeping
Sleeping
Enhance explanation via prompt engineering
#5
by
angelicaporto
- opened
app.py
CHANGED
|
@@ -8,50 +8,51 @@ import re
|
|
| 8 |
import pandas as pd # type: ignore
|
| 9 |
from dotenv import load_dotenv # type: ignore # Para cambios locales
|
| 10 |
from supabase import create_client, Client # type: ignore
|
| 11 |
-
from pandasai import Agent
|
| 12 |
|
| 13 |
# from pandasai import SmartDataframe # type: ignore
|
| 14 |
-
from pandasai
|
|
|
|
| 15 |
from pandasai import Agent
|
| 16 |
import matplotlib.pyplot as plt
|
|
|
|
| 17 |
|
| 18 |
# ---------------------------------------------------------------------------------
|
| 19 |
# Funciones auxiliares
|
| 20 |
# ---------------------------------------------------------------------------------
|
| 21 |
|
| 22 |
|
| 23 |
-
# Ejemplo de prompt generado:
|
| 24 |
-
# generate_graph_prompt("Germany", "France", "fertility rate", 2020, 2030)
|
| 25 |
def generate_graph_prompt(user_query):
|
| 26 |
prompt = f"""
|
| 27 |
-
|
| 28 |
|
| 29 |
-
|
| 30 |
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
|
|
|
|
|
|
| 34 |
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
|
| 41 |
-
|
| 42 |
-
result = {{
|
| 43 |
-
"type": "plot",
|
| 44 |
-
"value": "temp_chart.png",
|
| 45 |
-
"explanation": explanation
|
| 46 |
-
}}
|
| 47 |
|
| 48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
|
| 50 |
-
|
| 51 |
-
|
| 52 |
return prompt
|
| 53 |
|
| 54 |
-
#
|
| 55 |
|
| 56 |
# ---------------------------------------------------------------------------------
|
| 57 |
# Configuración de conexión a Supabase
|
|
@@ -101,20 +102,18 @@ def load_data(table):
|
|
| 101 |
# Cargar datos iniciales
|
| 102 |
# ---------------------------------------------------------------------------------
|
| 103 |
|
| 104 |
-
# # Cargar datos desde la tabla "labor"
|
| 105 |
-
data = load_data("labor")
|
| 106 |
-
|
| 107 |
# TODO: La idea es luego usar todas las tablas, cuando ya funcione.
|
| 108 |
-
# Se puede si el modelo funciona con las gráficas, sino que toca mejorarlo
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
# population_data = load_data("population")
|
| 113 |
-
# predictions_data = load_data("predictions")
|
| 114 |
|
|
|
|
| 115 |
|
| 116 |
# ---------------------------------------------------------------------------------
|
| 117 |
-
# Inicializar
|
| 118 |
# ---------------------------------------------------------------------------------
|
| 119 |
|
| 120 |
# ollama_llm = LocalLLM(api_base="http://localhost:11434/v1",
|
|
@@ -124,43 +123,66 @@ data = load_data("labor")
|
|
| 124 |
|
| 125 |
lm_studio_llm = LocalLLM(api_base="http://localhost:1234/v1") # el modelo es gemma-3-12b-it-qat
|
| 126 |
|
| 127 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 128 |
|
| 129 |
# ---------------------------------------------------------------------------------
|
| 130 |
# Configuración de la app en Streamlit
|
| 131 |
# ---------------------------------------------------------------------------------
|
| 132 |
|
| 133 |
# Título de la app
|
| 134 |
-
st.title("
|
| 135 |
|
| 136 |
# TODO: Poner instrucciones al usuario sobre cómo hacer un muy buen prompt (sin tecnisismos, pensando en el usuario final)
|
| 137 |
|
| 138 |
-
|
| 139 |
# Entrada de usuario para describir el gráfico
|
| 140 |
user_input = st.text_input("What graphics do you have in mind")
|
| 141 |
generate_button = st.button("Generate")
|
| 142 |
|
| 143 |
-
# Procesar el input del usuario con PandasAI
|
| 144 |
if generate_button and user_input:
|
| 145 |
with st.spinner('Generating answer...'):
|
| 146 |
try:
|
|
|
|
| 147 |
prompt = generate_graph_prompt(user_input)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 148 |
answer = agent.chat(prompt)
|
| 149 |
-
explanation = agent.explain()
|
| 150 |
print(f"\nAnswer type: {type(answer)}\n") # Verificar tipo de objeto
|
| 151 |
print(f"\nAnswer content: {answer}\n") # Inspeccionar contenido de la respuesta
|
| 152 |
-
print(f"\
|
| 153 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 154 |
|
| 155 |
if isinstance(answer, str) and os.path.isfile(answer):
|
| 156 |
# Si el output es una ruta válida a imagen
|
| 157 |
im = plt.imread(answer)
|
| 158 |
st.image(im)
|
| 159 |
os.remove(answer) # Limpiar archivo temporal
|
| 160 |
-
|
|
|
|
|
|
|
| 161 |
else:
|
| 162 |
# Si no es una ruta válida, mostrar como texto
|
| 163 |
-
st.markdown(str(answer))
|
| 164 |
|
| 165 |
except Exception as e:
|
| 166 |
st.error(f"Error generating answer: {e}")
|
|
|
|
| 8 |
import pandas as pd # type: ignore
|
| 9 |
from dotenv import load_dotenv # type: ignore # Para cambios locales
|
| 10 |
from supabase import create_client, Client # type: ignore
|
|
|
|
| 11 |
|
| 12 |
# from pandasai import SmartDataframe # type: ignore
|
| 13 |
+
from pandasai import SmartDatalake # type: ignore # Porque ya usamos más de un df (más de una tabla de nuestra db)
|
| 14 |
+
from pandasai.llm.local_llm import LocalLLM # type: ignore
|
| 15 |
from pandasai import Agent
|
| 16 |
import matplotlib.pyplot as plt
|
| 17 |
+
import time
|
| 18 |
|
| 19 |
# ---------------------------------------------------------------------------------
|
| 20 |
# Funciones auxiliares
|
| 21 |
# ---------------------------------------------------------------------------------
|
| 22 |
|
| 23 |
|
|
|
|
|
|
|
| 24 |
def generate_graph_prompt(user_query):
|
| 25 |
prompt = f"""
|
| 26 |
+
You are a senior data scientist analyzing European labor force data.
|
| 27 |
|
| 28 |
+
Given the user's request: "{user_query}"
|
| 29 |
|
| 30 |
+
1. Plot the relevant data using matplotlib:
|
| 31 |
+
- Use `df.query("geo == 'X'")` to filter the country, instead of chained comparisons.
|
| 32 |
+
- Avoid using filters like `df[df['geo'] == 'Germany']`.
|
| 33 |
+
- Include clear axis labels and a descriptive title.
|
| 34 |
+
- Save the plot as an image file (e.g., temp_chart.png).
|
| 35 |
|
| 36 |
+
2. After plotting, write a **concise analytical summary** of the trend based on those 5 years. The summary should:
|
| 37 |
+
- Identify the **year with the largest increase** and the percent change.
|
| 38 |
+
- Identify the **year with the largest decrease** and the percent change.
|
| 39 |
+
- Provide a **brief overall trend interpretation** (e.g., steady growth, fluctuating, recovery, etc.).
|
| 40 |
+
- Avoid listing every year individually, summarize intelligently.
|
| 41 |
|
| 42 |
+
3. Store the summary in a variable named `explanation`.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
|
| 44 |
+
4. Return a result dictionary structured as follows:
|
| 45 |
+
result = {{
|
| 46 |
+
"type": "plot",
|
| 47 |
+
"value": "temp_chart.png",
|
| 48 |
+
"explanation": explanation
|
| 49 |
+
}}
|
| 50 |
|
| 51 |
+
IMPORTANT: Use only the data available in the input DataFrame.
|
| 52 |
+
"""
|
| 53 |
return prompt
|
| 54 |
|
| 55 |
+
#TODO: Continuar mejorando el prompt
|
| 56 |
|
| 57 |
# ---------------------------------------------------------------------------------
|
| 58 |
# Configuración de conexión a Supabase
|
|
|
|
| 102 |
# Cargar datos iniciales
|
| 103 |
# ---------------------------------------------------------------------------------
|
| 104 |
|
|
|
|
|
|
|
|
|
|
| 105 |
# TODO: La idea es luego usar todas las tablas, cuando ya funcione.
|
| 106 |
+
# Se puede si el modelo funciona con las gráficas, sino que toca mejorarlo porque serían consultas más complejas.
|
| 107 |
+
|
| 108 |
+
labor_data = load_data("labor")
|
| 109 |
+
fertility_data = load_data("fertility")
|
| 110 |
# population_data = load_data("population")
|
| 111 |
+
# predictions_data = load_data("predictions")
|
| 112 |
|
| 113 |
+
# TODO: Buscar la forma de disminuir la latencia (muchos datos = mucha latencia)
|
| 114 |
|
| 115 |
# ---------------------------------------------------------------------------------
|
| 116 |
+
# Inicializar LLM desde Ollama con PandasAI
|
| 117 |
# ---------------------------------------------------------------------------------
|
| 118 |
|
| 119 |
# ollama_llm = LocalLLM(api_base="http://localhost:11434/v1",
|
|
|
|
| 123 |
|
| 124 |
lm_studio_llm = LocalLLM(api_base="http://localhost:1234/v1") # el modelo es gemma-3-12b-it-qat
|
| 125 |
|
| 126 |
+
# sdl = SmartDatalake([labor_data, fertility_data, population_data, predictions_data], config={"llm": ollama_llm}) # DataFrame PandasAI-ready.
|
| 127 |
+
# sdl = SmartDatalake([labor_data, fertility_data], config={"llm": ollama_llm})
|
| 128 |
+
|
| 129 |
+
# agent = Agent([labor_data], config={"llm": lm_studio_llm}) # TODO: Probar Agent con multiples dfs
|
| 130 |
+
agent = Agent(
|
| 131 |
+
[
|
| 132 |
+
labor_data,
|
| 133 |
+
fertility_data
|
| 134 |
+
],
|
| 135 |
+
config={
|
| 136 |
+
"llm": lm_studio_llm,
|
| 137 |
+
"enable_cache": False,
|
| 138 |
+
"enable_filter_extraction": False # evita errores de parseo
|
| 139 |
+
}
|
| 140 |
+
)
|
| 141 |
|
| 142 |
# ---------------------------------------------------------------------------------
|
| 143 |
# Configuración de la app en Streamlit
|
| 144 |
# ---------------------------------------------------------------------------------
|
| 145 |
|
| 146 |
# Título de la app
|
| 147 |
+
st.title("Europe GraphGen :blue[Graph generator] :flag-eu:")
|
| 148 |
|
| 149 |
# TODO: Poner instrucciones al usuario sobre cómo hacer un muy buen prompt (sin tecnisismos, pensando en el usuario final)
|
| 150 |
|
|
|
|
| 151 |
# Entrada de usuario para describir el gráfico
|
| 152 |
user_input = st.text_input("What graphics do you have in mind")
|
| 153 |
generate_button = st.button("Generate")
|
| 154 |
|
|
|
|
| 155 |
if generate_button and user_input:
|
| 156 |
with st.spinner('Generating answer...'):
|
| 157 |
try:
|
| 158 |
+
print(f"\nGenerating prompt...\n")
|
| 159 |
prompt = generate_graph_prompt(user_input)
|
| 160 |
+
print(f"\nPrompt generated\n")
|
| 161 |
+
|
| 162 |
+
start_time = time.time()
|
| 163 |
+
|
| 164 |
answer = agent.chat(prompt)
|
|
|
|
| 165 |
print(f"\nAnswer type: {type(answer)}\n") # Verificar tipo de objeto
|
| 166 |
print(f"\nAnswer content: {answer}\n") # Inspeccionar contenido de la respuesta
|
| 167 |
+
print(f"\nFull result: {agent.last_result}\n")
|
| 168 |
+
|
| 169 |
+
full_result = agent.last_result
|
| 170 |
+
explanation = full_result.get("explanation", "")
|
| 171 |
+
|
| 172 |
+
elapsed_time = time.time() - start_time
|
| 173 |
+
print(f"\nExecution time: {elapsed_time:.2f} seconds\n")
|
| 174 |
|
| 175 |
if isinstance(answer, str) and os.path.isfile(answer):
|
| 176 |
# Si el output es una ruta válida a imagen
|
| 177 |
im = plt.imread(answer)
|
| 178 |
st.image(im)
|
| 179 |
os.remove(answer) # Limpiar archivo temporal
|
| 180 |
+
|
| 181 |
+
if explanation:
|
| 182 |
+
st.markdown(f"**Explanation:** {explanation}")
|
| 183 |
else:
|
| 184 |
# Si no es una ruta válida, mostrar como texto
|
| 185 |
+
st.markdown(str(answer))
|
| 186 |
|
| 187 |
except Exception as e:
|
| 188 |
st.error(f"Error generating answer: {e}")
|