File size: 16,688 Bytes
82d55c6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 |
import math
import torch
import torch.nn as nn
# from torch.nn import Module
# # for gzlabel contable_gpu env
# class MultiheadAttention(Module):
# r"""Allows the model to jointly attend to information
# from different representation subspaces.
# See `Attention Is All You Need <https://arxiv.org/abs/1706.03762>`_.
#
# .. math::
# \text{MultiHead}(Q, K, V) = \text{Concat}(head_1,\dots,head_h)W^O
#
# where :math:`head_i = \text{Attention}(QW_i^Q, KW_i^K, VW_i^V)`.
#
# Args:
# embed_dim: Total dimension of the model.
# num_heads: Number of parallel attention heads. Note that ``embed_dim`` will be split
# across ``num_heads`` (i.e. each head will have dimension ``embed_dim // num_heads``).
# dropout: Dropout probability on ``attn_output_weights``. Default: ``0.0`` (no dropout).
# bias: If specified, adds bias to input / output projection layers. Default: ``True``.
# add_bias_kv: If specified, adds bias to the key and value sequences at dim=0. Default: ``False``.
# add_zero_attn: If specified, adds a new batch of zeros to the key and value sequences at dim=1.
# Default: ``False``.
# kdim: Total number of features for keys. Default: ``None`` (uses ``kdim=embed_dim``).
# vdim: Total number of features for values. Default: ``None`` (uses ``vdim=embed_dim``).
# batch_first: If ``True``, then the input and output tensors are provided
# as (batch, seq, feature). Default: ``False`` (seq, batch, feature).
#
# Examples::
#
# >>> multihead_attn = nn.MultiheadAttention(embed_dim, num_heads)
# >>> attn_output, attn_output_weights = multihead_attn(query, key, value)
# """
# __constants__ = ['batch_first']
# bias_k: Optional[torch.Tensor]
# bias_v: Optional[torch.Tensor]
#
# def __init__(self, embed_dim, num_heads, dropout=0., bias=True, add_bias_kv=False, add_zero_attn=False,
# kdim=None, vdim=None, batch_first=False, device=None, dtype=None) -> None:
# factory_kwargs = {'device': device, 'dtype': dtype}
# super(MultiheadAttention, self).__init__()
# self.embed_dim = embed_dim
# self.kdim = kdim if kdim is not None else embed_dim
# self.vdim = vdim if vdim is not None else embed_dim
# self._qkv_same_embed_dim = self.kdim == embed_dim and self.vdim == embed_dim
#
# self.num_heads = num_heads
# self.dropout = dropout
# self.batch_first = batch_first
# self.head_dim = embed_dim // num_heads
# assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads"
#
# if self._qkv_same_embed_dim is False:
# self.q_proj_weight = Parameter(torch.empty((embed_dim, embed_dim), **factory_kwargs))
# self.k_proj_weight = Parameter(torch.empty((embed_dim, self.kdim), **factory_kwargs))
# self.v_proj_weight = Parameter(torch.empty((embed_dim, self.vdim), **factory_kwargs))
# self.register_parameter('in_proj_weight', None)
# else:
# self.in_proj_weight = Parameter(torch.empty((3 * embed_dim, embed_dim), **factory_kwargs))
# self.register_parameter('q_proj_weight', None)
# self.register_parameter('k_proj_weight', None)
# self.register_parameter('v_proj_weight', None)
#
# if bias:
# self.in_proj_bias = Parameter(torch.empty(3 * embed_dim, **factory_kwargs))
# else:
# self.register_parameter('in_proj_bias', None)
# self.out_proj = NonDynamicallyQuantizableLinear(embed_dim, embed_dim, bias=bias, **factory_kwargs)
#
# if add_bias_kv:
# self.bias_k = Parameter(torch.empty((1, 1, embed_dim), **factory_kwargs))
# self.bias_v = Parameter(torch.empty((1, 1, embed_dim), **factory_kwargs))
# else:
# self.bias_k = self.bias_v = None
#
# self.add_zero_attn = add_zero_attn
#
# self._reset_parameters()
#
# def _reset_parameters(self):
# if self._qkv_same_embed_dim:
# xavier_uniform_(self.in_proj_weight)
# else:
# xavier_uniform_(self.q_proj_weight)
# xavier_uniform_(self.k_proj_weight)
# xavier_uniform_(self.v_proj_weight)
#
# if self.in_proj_bias is not None:
# constant_(self.in_proj_bias, 0.)
# constant_(self.out_proj.bias, 0.)
# if self.bias_k is not None:
# xavier_normal_(self.bias_k)
# if self.bias_v is not None:
# xavier_normal_(self.bias_v)
#
# def __setstate__(self, state):
# # Support loading old MultiheadAttention checkpoints generated by v1.1.0
# if '_qkv_same_embed_dim' not in state:
# state['_qkv_same_embed_dim'] = True
#
# super(MultiheadAttention, self).__setstate__(state)
#
# def forward(self, query: Tensor, key: Tensor, value: Tensor, key_padding_mask: Optional[Tensor] = None,
# need_weights: bool = True, attn_mask: Optional[Tensor] = None) -> Tuple[Tensor, Optional[Tensor]]:
# r"""
# Args:
# query: Query embeddings of shape :math:`(L, N, E_q)` when ``batch_first=False`` or :math:`(N, L, E_q)`
# when ``batch_first=True``, where :math:`L` is the target sequence length, :math:`N` is the batch size,
# and :math:`E_q` is the query embedding dimension ``embed_dim``. Queries are compared against
# key-value pairs to produce the output. See "Attention Is All You Need" for more details.
# key: Key embeddings of shape :math:`(S, N, E_k)` when ``batch_first=False`` or :math:`(N, S, E_k)` when
# ``batch_first=True``, where :math:`S` is the source sequence length, :math:`N` is the batch size, and
# :math:`E_k` is the key embedding dimension ``kdim``. See "Attention Is All You Need" for more details.
# value: Value embeddings of shape :math:`(S, N, E_v)` when ``batch_first=False`` or :math:`(N, S, E_v)` when
# ``batch_first=True``, where :math:`S` is the source sequence length, :math:`N` is the batch size, and
# :math:`E_v` is the value embedding dimension ``vdim``. See "Attention Is All You Need" for more details.
# key_padding_mask: If specified, a mask of shape :math:`(N, S)` indicating which elements within ``key``
# to ignore for the purpose of attention (i.e. treat as "padding"). Binary and byte masks are supported.
# For a binary mask, a ``True`` value indicates that the corresponding ``key`` value will be ignored for
# the purpose of attention. For a byte mask, a non-zero value indicates that the corresponding ``key``
# value will be ignored.
# need_weights: If specified, returns ``attn_output_weights`` in addition to ``attn_outputs``.
# Default: ``True``.
# attn_mask: If specified, a 2D or 3D mask preventing attention to certain positions. Must be of shape
# :math:`(L, S)` or :math:`(N\cdot\text{num\_heads}, L, S)`, where :math:`N` is the batch size,
# :math:`L` is the target sequence length, and :math:`S` is the source sequence length. A 2D mask will be
# broadcasted across the batch while a 3D mask allows for a different mask for each entry in the batch.
# Binary, byte, and float masks are supported. For a binary mask, a ``True`` value indicates that the
# corresponding position is not allowed to attend. For a byte mask, a non-zero value indicates that the
# corresponding position is not allowed to attend. For a float mask, the mask values will be added to
# the attention weight.
#
# Outputs:
# - **attn_output** - Attention outputs of shape :math:`(L, N, E)` when ``batch_first=False`` or
# :math:`(N, L, E)` when ``batch_first=True``, where :math:`L` is the target sequence length, :math:`N` is
# the batch size, and :math:`E` is the embedding dimension ``embed_dim``.
# - **attn_output_weights** - Attention output weights of shape :math:`(N, L, S)`, where :math:`N` is the batch
# size, :math:`L` is the target sequence length, and :math:`S` is the source sequence length. Only returned
# when ``need_weights=True``.
# """
# if self.batch_first:
# query, key, value = [x.transpose(1, 0) for x in (query, key, value)]
#
# if not self._qkv_same_embed_dim:
# attn_output, attn_output_weights = F.multi_head_attention_forward(
# query, key, value, self.embed_dim, self.num_heads,
# self.in_proj_weight, self.in_proj_bias,
# self.bias_k, self.bias_v, self.add_zero_attn,
# self.dropout, self.out_proj.weight, self.out_proj.bias,
# training=self.training,
# key_padding_mask=key_padding_mask, need_weights=need_weights,
# attn_mask=attn_mask, use_separate_proj_weight=True,
# q_proj_weight=self.q_proj_weight, k_proj_weight=self.k_proj_weight,
# v_proj_weight=self.v_proj_weight)
# else:
# attn_output, attn_output_weights = F.multi_head_attention_forward(
# query, key, value, self.embed_dim, self.num_heads,
# self.in_proj_weight, self.in_proj_bias,
# self.bias_k, self.bias_v, self.add_zero_attn,
# self.dropout, self.out_proj.weight, self.out_proj.bias,
# training=self.training,
# key_padding_mask=key_padding_mask, need_weights=need_weights,
# attn_mask=attn_mask)
# if self.batch_first:
# return attn_output.transpose(1, 0), attn_output_weights
# else:
# return attn_output, attn_output_weights
class PositionalEncoding(nn.Module):
"Implement the PE function."
def __init__(self, d_model, dropout, max_len=5000):
#d_model=512,dropout=0.1,
#max_len=5000代表事先准备好长度为5000的序列的位置编码,其实没必要,
#一般100或者200足够了。
super(PositionalEncoding, self).__init__()
self.dropout = nn.Dropout(p=dropout)
# Compute the positional encodings once in log space.
pe = torch.zeros(max_len, d_model)
#(5000,512)矩阵,保持每个位置的位置编码,一共5000个位置,
#每个位置用一个512维度向量来表示其位置编码
position = torch.arange(0, max_len).unsqueeze(1)
# (5000) -> (5000,1)
div_term = torch.exp(torch.arange(0, d_model, 2) *
-(math.log(10000.0) / d_model))
# (0,2,…, 4998)一共准备2500个值,供sin, cos调用
pe[:, 0::2] = torch.sin(position * div_term) # 偶数下标的位置
pe[:, 1::2] = torch.cos(position * div_term) # 奇数下标的位置
pe = pe.unsqueeze(0)
# (5000, 512) -> (1, 5000, 512) 为batch.size留出位置
self.register_buffer('pe', pe)
def forward(self, x):
x = x + self.pe[:, :x.size(1)]
# 接受1.Embeddings的词嵌入结果x,
#然后把自己的位置编码pe,封装成torch的Variable(不需要梯度),加上去。
#例如,假设x是(30,10,512)的一个tensor,
#30是batch.size, 10是该batch的序列长度, 512是每个词的词嵌入向量;
#则该行代码的第二项是(1, min(10, 5000), 512)=(1,10,512),
#在具体相加的时候,会扩展(1,10,512)为(30,10,512),
#保证一个batch中的30个序列,都使用(叠加)一样的位置编码。
return self.dropout(x) # 增加一次dropout操作
# 注意,位置编码不会更新,是写死的,所以这个class里面没有可训练的参数。
class TwoTrackAttention(nn.Module):
def __init__(self, d_attn, n_head, d_ff=512, dropout=0.1) -> None:
super().__init__()
self.self_attn = torch.nn.MultiheadAttention(
d_attn, n_head,
dropout = dropout,
batch_first=True # gzbl 这边的pytorch版本没有这个参数
)
self.dropout_self = nn.Dropout(dropout)
self.cross_attn = torch.nn.MultiheadAttention(
d_attn, n_head,
dropout = dropout,
batch_first=True
)
self.dropout_cross = nn.Dropout(dropout)
self.norm1 = nn.LayerNorm(d_attn)
self.ff1 = nn.Linear(d_attn, d_ff)
self.dropout_ff = nn.Dropout(dropout)
self.ff2 = nn.Linear(d_ff, d_attn)
self.norm2 = nn.LayerNorm(d_attn)
self.dropout = nn.Dropout(dropout)
self.activation = nn.ReLU()
# self.s_query = nn.Linear(d_attn,d_attn)
# self.s_key = nn.Linear(d_attn,d_attn)
# self.s_value = nn.Linear(d_attn,d_attn)
#
# self.c_query = nn.Linear(d_attn,d_attn)
# self.c_key = nn.Linear(d_attn,d_attn)
# self.c_value = nn.Linear(d_attn,d_attn)
def forward(self, obj_update, obj_message):
self_update = self.self_attn(
query = obj_update,
key = obj_update,
value = obj_update
)[0]
cross_update = self.cross_attn(
query = obj_update, # [1, 299, 128]
key = obj_message, # [1, 74, 128]
value = obj_message # [1, 74, 128]
)[0]
# [torch.Size([1, 299, 128]), torch.Size([1, 74, 128]), torch.Size([1, 74, 128])]
obj_update = obj_update + self.dropout_self(self_update) + self.dropout_cross(cross_update)
obj_update = self.norm1(obj_update)
ff_update = self.ff2(self.dropout_ff(self.activation(self.ff1(obj_update))))
obj_update = obj_update + self.dropout(ff_update)
obj_update = self.norm2(obj_update)
return obj_update
class SymertricTwoTrackAttention(nn.Module):
def __init__(self, d_attn, n_head, d_ff=512, dropout=0.1,sync = False) -> None:
super().__init__()
self.tta1 = TwoTrackAttention(d_attn, n_head, d_ff, dropout)
self.tta2 = TwoTrackAttention(d_attn, n_head, d_ff, dropout)
self.sync = sync
def forward(self, obj_1, obj_2):
if self.sync:
return self.tta1(obj_1, obj_2), self.tta2(obj_2, obj_1)
else:
obj_1 = self.tta1(obj_1, obj_2)
obj_2 = self.tta2(obj_2, obj_1)
return obj_1, obj_2
class LinearFF(nn.Module):
def __init__(self, d_in, d_out, dropout=0.1) -> None:
super().__init__()
self.emb = nn.Linear(d_in, d_out)
self.norm = nn.LayerNorm(d_out)
self.dropout = nn.Dropout(dropout)
self.activation = nn.ReLU()
def forward(self, f_in):
f_in = f_in.permute(0,2,1)
return self.norm(self.dropout(self.activation(self.emb(f_in))))
class ProteinRNAInteraction(nn.Module):
def __init__(self, d_pro, d_rna, n_layers, d_attn, n_head=4, d_ff=512, dropout=0.1,sync=False) -> None:
super().__init__()
print('sync update ProteinRNAInteraction',sync)
self.pro_emb = LinearFF(d_pro, d_attn)
self.pro_rna = LinearFF(d_rna, d_attn)
self.pro_pos = PositionalEncoding(d_attn,dropout)
self.rna_pos = PositionalEncoding(d_attn,dropout)
self.layers = nn.ModuleList([
SymertricTwoTrackAttention(d_attn, n_head, d_ff, dropout,sync = sync) for _ in range(n_layers)
])
self.pred = nn.Linear(d_attn, 1)
# self.pred = nn.Linear(2*d_attn, 1)
self.sigmoid = nn.Sigmoid()
def forward(self, f_pro, f_rna):
# print(f_pro.shape)
# print(f_pro.device)
f_pro = self.pro_emb(f_pro)
f_rna = self.pro_rna(f_rna)
f_pro = self.pro_pos(f_pro)
f_rna = self.rna_pos(f_rna)
for layer in self.layers:
f_pro, f_rna = layer(f_pro, f_rna)
f_pro = f_pro.unsqueeze(2) # [B, L, R, D]
f_rna = f_rna.unsqueeze(1)
prob = self.sigmoid(self.pred(f_rna.mul(f_pro)))
return prob
# f_pro = f_pro.unsqueeze(2) # [1, 299, 1, 128]
# f_rna = f_rna.unsqueeze(1) # [1, 1, 74, 128]
# f_pro = f_pro.repeat(1, 1, f_rna.shape[2], 1) # [B, L, R, D]
# f_rna = f_rna.repeat(1, f_pro.shape[1], 1, 1) # [B, L, R, D]
#
# # prob = self.pred(f_rna.mul(f_pro))
# prob = self.pred(torch.cat([f_pro, f_rna], -1))
# # print(prob.max(),prob.min(),prob.mean())
# prob = torch.sigmoid(prob)
# # prob = self.sigmoid(prob)
# # prob = self.sigmoid(self.pred(torch.cat([f_pro, f_rna], -1))) # pred : -0.06, 0.619
# return prob
|