File size: 25,988 Bytes
82d55c6 a03a89b 82d55c6 a03a89b 82d55c6 855fbf8 82d55c6 24b1044 82d55c6 24b1044 82d55c6 a03a89b 82d55c6 a03a89b 82d55c6 d8f86a3 82d55c6 65251a3 82d55c6 a03a89b 82d55c6 a03a89b 82d55c6 a03a89b 82d55c6 a03a89b 82d55c6 1e6784b 82d55c6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 |
import gradio as gr
import pandas as pd
import numpy as np
import random
import tempfile
import os
import zipfile
import io
from Bio import SeqIO
import torch
from sklearn.preprocessing import OneHotEncoder
import plotly.graph_objects as go
class RPContactPredictor:
def __init__(self, model_path='./weight/model_roc_0_56=0.779.pt'):
"""Initialize RNA-protein contact predictor"""
self.model = torch.load(model_path, map_location=torch.device('cpu'))
self.model.eval()
self.seed_everything()
def seed_everything(self, seed=2022):
"""Set random seed for reproducibility"""
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def one_hot_encode(self, sequences, alpha='ACGU'):
"""One-hot encode biological sequences"""
sequences_array = np.array(list(sequences)).reshape(-1, 1)
label = np.array(list(alpha)).reshape(-1, 1)
enc = OneHotEncoder(handle_unknown='ignore')
enc.fit(label)
seq_encode = enc.transform(sequences_array).toarray()
return seq_encode
def contact_partner_constrained(self, prob_matrix, colmax=12, rowmax=24):
"""Apply contact partner constraints to probability matrix"""
row_max_indices = np.argsort(-prob_matrix, axis=1)[:, :rowmax]
row_max_mask = np.zeros_like(prob_matrix)
row_max_mask[np.arange(prob_matrix.shape[0])[:, np.newaxis], row_max_indices] = 1
col_max_indices = np.argsort(-prob_matrix, axis=0)[:colmax, :]
col_max_mask = np.zeros_like(prob_matrix)
col_max_mask[col_max_indices, np.arange(prob_matrix.shape[1])] = 1
mask = np.logical_and(row_max_mask, col_max_mask).astype(np.float32)
prob_matrix = np.where(mask == 1, prob_matrix, 0)
return prob_matrix
def read_fasta(self, fasta_content):
"""Parse FASTA format content"""
sequences = {}
with tempfile.NamedTemporaryFile(mode='w', suffix='.fasta', delete=False) as tmp_file:
tmp_file.write(fasta_content)
tmp_file_path = tmp_file.name
try:
for record in SeqIO.parse(tmp_file_path, 'fasta'):
pdbid, seq = record.id, str(record.seq)
rnaid, proid = pdbid.split('.')
rnaseq, proseq = seq.split('.')
sequences = {
'rna': (rnaid, rnaseq),
'protein': (proid, proseq)
}
break
finally:
os.unlink(tmp_file_path)
return sequences
def predict_contact(self, rna_seq, protein_seq):
"""Predict RNA-protein contact matrix"""
# Encode sequences
rna_oh = self.one_hot_encode(rna_seq, alpha='ACGU')
pro_oh = self.one_hot_encode(protein_seq, alpha='GAVLIFWYDNEKQMSTCPHR')
# Prepare input tensors
x_rna = torch.from_numpy(np.expand_dims(rna_oh, 0)).transpose(-1, -2).float()
x_pro = torch.from_numpy(np.expand_dims(pro_oh, 0)).transpose(-1, -2).float()
# Run prediction
with torch.no_grad():
outputs = self.model(x_pro, x_rna)
# Process outputs
outputs = torch.squeeze(outputs, -1).permute(0, 2, 1)
contact_matrix = outputs[0].cpu().numpy()
# Apply constraints and normalization
contact_matrix = self.contact_partner_constrained(contact_matrix)
contact_matrix = (contact_matrix - contact_matrix.min()) / (contact_matrix.max() - contact_matrix.min() + 1e-8)
return contact_matrix
def create_heatmap(contact_matrix, rna_labels, protein_labels, rna_name, protein_name, Threshold=0.0):
"""Create interactive contact heatmap with threshold filtering"""
# Apply Threshold threshold
filtered_matrix = contact_matrix.copy()
filtered_matrix[filtered_matrix < Threshold] = 0
ratio = filtered_matrix.shape[1] / filtered_matrix.shape[0]
fig = go.Figure(data=go.Heatmap(
z=filtered_matrix,
x=protein_labels,
y=rna_labels,
colorscale='Reds',
showscale=True,
colorbar=dict(title="Predicted Probability"),
hovertemplate='RNA: %{y}<br>Protein: %{x}<br>Probability: %{z:.4f}<extra></extra>'
))
fig.update_layout(
title={
'text': f"{rna_name} vs {protein_name} (Threshold ≥ {Threshold:.3f})",
'x': 0.5,
'xanchor': 'center',
'yanchor': 'top'
},
xaxis_title=f"Residues ({protein_name}, {len(protein_labels)} AA)",
yaxis_title=f"Nucleotides ({rna_name}, {len(rna_labels)} nt)",
width=max(ratio*300,600),
height=300,
font=dict(size=12)
)
return fig
def get_contact_pairs(contact_matrix, rna_labels, protein_labels, Threshold=0.0):
"""Get filtered contact pairs list above threshold"""
df = pd.DataFrame(contact_matrix, index=rna_labels, columns=protein_labels)
df_stacked = df.stack().reset_index()
df_stacked.columns = ['RNA', 'Protein', 'Probability']
df_filtered = df_stacked[df_stacked['Probability'] > Threshold].sort_values('Probability', ascending=False)
return df_filtered
def create_download_files(contact_matrix, rna_labels, protein_labels, rna_name, protein_name):
"""Create downloadable result files package"""
# Create temporary directory
temp_dir = tempfile.mkdtemp()
# Save heatmap raw data
heatmap_df = pd.DataFrame(contact_matrix, index=rna_labels, columns=protein_labels)
heatmap_file = os.path.join(temp_dir, f"{rna_name}_{protein_name}_heatmap.csv")
heatmap_df.to_csv(heatmap_file, index=True)
# Save contact pairs list
pairs_df = get_contact_pairs(contact_matrix, rna_labels, protein_labels, Threshold=0.0)
pairs_file = os.path.join(temp_dir, f"{rna_name}_{protein_name}_contact_pairs.csv")
pairs_df.to_csv(pairs_file, index=False)
# Create ZIP file
zip_path = os.path.join(temp_dir, f"{rna_name}_{protein_name}_results.zip")
with zipfile.ZipFile(zip_path, 'w') as zipf:
zipf.write(heatmap_file, os.path.basename(heatmap_file))
zipf.write(pairs_file, os.path.basename(pairs_file))
return zip_path
def process_prediction(fasta_file, rna_sequence, protein_sequence, input_method):
"""Process prediction request and return initial results"""
if not fasta_file and not (rna_sequence and protein_sequence):
return "❌ Please upload a FASTA file or enter RNA and protein sequences",None, None, None, None, None, None
try:
# Process input
if input_method == "Upload FASTA File" and fasta_file:
fasta_content = fasta_file.decode('utf-8')
sequences = predictor.read_fasta(fasta_content)
else:
# Create sequences from text input
sequences = {
'rna': ('RNA', rna_sequence),
'protein': ('Protein', protein_sequence)
}
rna_id, rna_seq = sequences['rna']
protein_id, protein_seq = sequences['protein']
# Validate sequences
if len(set(rna_seq) - set('ACGU')) > 0:
return f"❌ RNA sequence contains invalid characters: {set(rna_seq) - set('ACGU')}",None, None, None, None, None, None
if len(set(protein_seq) - set('GAVLIFWYDNEKQMSTCPHR')) > 0:
return f"❌ Protein sequence contains invalid characters: {set(protein_seq) - set('GAVLIFWYDNEKQMSTCPHR')}",None, None, None, None, None, None
# Run contact prediction
contact_matrix = predictor.predict_contact(rna_seq, protein_seq)
# Generate residue labels
rna_labels = [f'{nt}{i + 1}' for i, nt in enumerate(rna_seq)]
protein_labels = [f'{aa}{i + 1}' for i, aa in enumerate(protein_seq)]
# Calculate default Threshold (minimum non-zero value)
non_zero_values = contact_matrix[contact_matrix > 0]
default_threshold = float(np.min(non_zero_values)) if len(non_zero_values) > 0 else 0.0
max_threshold = round(float(np.max(contact_matrix)), 2)
# Create initial heatmap with default Threshold
heatmap = create_heatmap(contact_matrix, rna_labels, protein_labels, rna_id, protein_id, default_threshold)
# Create initial contact pairs table
contact_pairs = get_contact_pairs(contact_matrix, rna_labels, protein_labels, default_threshold)
# Create download file
download_file = create_download_files(contact_matrix, rna_labels, protein_labels, rna_id, protein_id)
# Prepare status message
status = f"✅ Prediction completed!\n"
status += f"RNA length: {len(rna_seq)}\n"
status += f"Protein length: {len(protein_seq)}\n"
status += f"Total predicted contacts: {len(contact_pairs)}"
# Prepare result state for threshold updates
result_state = {
'contact_matrix': contact_matrix,
'rna_labels': rna_labels,
'protein_labels': protein_labels,
'rna_id': rna_id,
'protein_id': protein_id
}
# Update slider configuration
default_threshold = round(default_threshold, 2)
slider_update = gr.update(
minimum=default_threshold,
maximum=max_threshold,
value=default_threshold,
step=0.001,
visible=True
)
# Create contact pairs info
contact_info = f"📊 Found {len(contact_pairs)} contacts (Threshold ≥ {default_threshold:.3f})"
return status, heatmap, contact_pairs, contact_info, download_file, result_state, slider_update
except Exception as e:
return f"❌ Prediction failed: {str(e)}", None, None, None, None, None, None
def update_results_with_threshold(Threshold, result_state):
"""Update heatmap and contact table based on Threshold threshold"""
if result_state is None:
return None, None, None
# Create updated heatmap
heatmap = create_heatmap(
result_state['contact_matrix'],
result_state['rna_labels'],
result_state['protein_labels'],
result_state['rna_id'],
result_state['protein_id'],
Threshold
)
# Create updated contact pairs table
contact_pairs = get_contact_pairs(
result_state['contact_matrix'],
result_state['rna_labels'],
result_state['protein_labels'],
Threshold
)
# Create contact pairs info
contact_info = f"📊 Found {len(contact_pairs)} contacts (Probability ≥ {Threshold:.3f})"
return heatmap, contact_pairs, contact_info
def reset_threshold(result_state):
if result_state is None:
return gr.update(value=0.0)
contact_matrix = result_state['contact_matrix']
non_zero_values = contact_matrix[contact_matrix > 0]
if len(non_zero_values) > 0:
default_threshold = float(np.min(non_zero_values))
else:
default_threshold = 0.0
# 返回滑块更新对象
return gr.update(
minimum=default_threshold,
maximum=float(np.max(non_zero_values)),
value=default_threshold,
interactive=True)
def load_example_data(fasta_input, rna_input, protein_input):
# 如果fasta有值(非空),则返回"Upload FASTA File"
if fasta_input is not None:
return gr.update(value="Upload FASTA File")
else:
return gr.update(value="Enter Sequences Directly")
def create_interface():
"""Create Gradio interface with threshold control"""
custom_css = """
.gradio-dataframe {
background: white !important;
border: 1px solid #e0e0e0;
border-radius: 8px;
box-shadow: 0 2px 4px rgba(0,0,0,0.05);
}
.dataframe-container {
padding: 12px;
background: white;
border-radius: 8px;
box-shadow: 0 2px 4px rgba(0,0,0,0.05);
}
.contact-info {
font-size: 14px;
font-weight: 500;
margin-bottom: 8px;
color: #4a5568;
}
.scrollable-plot {
max-width: 100%;
overflow-x: auto; /* 水平滚动条 */
overflow-y: auto; /* 垂直滚动条 */
border: 1px solid #ddd;
border-radius: 4px;
}
.scrollable-plot > div {
min-width: max-content; /* 保持原始宽度 */
}
"""
with gr.Blocks(title="RNA-Protein Contact Prediction Tool",
theme=gr.themes.Soft(primary_hue="blue", secondary_hue="teal"),css=None) as app:
gr.Markdown("""
<center>
# 🧬 RPcontact: RNA-Protein Contact Prediction
**Direct Nucleotide–Residue Contact Prediction from Primary Sequences** [Paper](https://www.biorxiv.org/content/10.1101/2025.06.02.657171v1.full)| [Code](https://github.com/JulseJiang/RPcontact) | [Demo](https://huggingface.co/spaces/julse/RPcontact)
</center>
>This tool leveraging **ERNIE-RNA** for RNA and **ESM-2** for protein modeling, the method provides high-resolution insights into RNA-protein interactions at the atomic level.
<br>Current Demo (auROC 0.779 on VL-49) is optimized for limited CPU environments using efficient one-hot encoding<br>
Advanced Model (auROC 0.845 on VL-49), the embedding-based approach will be released upon paper publication ([contact us](mailto:[email protected]) for early access)
""")
with gr.Tab("🔬 Contact Prediction"):
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("## ⚙️ Input Options")
with gr.Group(elem_classes="input-group"):
input_method = gr.Radio(
choices=["Upload FASTA File", "Enter Sequences Directly"],
value="Enter Sequences Directly",
label="Input Method"
)
fasta_input = gr.File(
label="FASTA File",
file_types=['.fasta', '.fa', '.txt'],
type='binary',
visible = False
)
rna_input = gr.Textbox(
label="RNA Sequence",
placeholder="Enter RNA sequence (use A,C,G,U)",
lines=3,
visible=True
)
protein_input = gr.Textbox(
label="Protein Sequence",
placeholder="Enter protein sequence (standard amino acid codes)",
lines=3,
visible=True
)
# Example data
gr.Examples(
examples=[
["./example/inputs/8DMB_W.8DMB_P.fasta", "GGGCCUUAUUAAAUGACUUC", "MDVPRKMETRRNLRRARRYRK"],
],
inputs=[fasta_input, rna_input, protein_input],
outputs=[input_method],
label="📋 Example Data (click to load)",
run_on_click=True,
fn = load_example_data
)
# Submit button at the bottom of input column
predict_btn = gr.Button("🚀 Run Prediction", variant="primary", size="lg")
# Status output
status_output = gr.Textbox(label="Prediction Status", lines=5)
with gr.Column(scale=2):
# Results section - initially hidden
gr.Markdown("""
## 📊 Results
""")
# Threshold control section
with gr.Row():
threshold_slider = gr.Slider(
label="Contact Probability Threshold",
minimum=0.0,
maximum=1.0,
value=0.0,
step=0.001,
visible=True,
interactive=True,
every=0.001
)
reset_btn = gr.Button("Reset to Default", size="sm")
gr.Markdown("""
### 🎯Contact Map
""")
# Heatmap display
heatmap_plot = gr.Plot(label='Contact Map')
# Contact pairs table with info header
gr.Markdown("### 🎯Contact Pairs")
contact_info = gr.Markdown("", elem_classes="contact-info")
contact_table = gr.Dataframe(
headers=["RNA", "Protein", "Probability"],
datatype=["str", "str", "number"],
row_count=15,
interactive=False,
elem_classes="gradio-dataframe"
)
# Download button
download_btn = gr.File(
label="📥 Download Results Package",
visible=True
)
# User Guide tab remains unchanged
with gr.Tab("📖 User Guide"):
# ... (unchanged user guide content) ...
gr.Markdown("""
# 📖 Comprehensive User Guide
## 🎯 Overview
This tool predicts direct contacts between nucleotides in RNA sequences and residues in protein sequences using a deep learning model based on ERNIE-RNA and ESM-2 embeddings. The tool provides:
- **Interactive contact matrix visualization** with adjustable probability thresholds
- **Detailed contact pairs list** sorted by prediction confidence
- **Downloadable results** in CSV and ZIP formats
- **Real-time threshold filtering** for result exploration
## 📋 Input Formats
### Method 1: FASTA File Upload
Upload a FASTA file containing both RNA and protein sequences in the following format:
```
>RNA_ID.PROTEIN_ID
RNA_SEQUENCE.PROTEIN_SEQUENCE
```
**Example:**
```
>8DMB_W.8DMB_P
GGGCCUUAUUAAAUGACUUC.MDVPRKMETRRNLRRARRYRK
```
### Method 2: Direct Sequence Input
Enter RNA and protein sequences directly in the respective text boxes:
- **RNA Sequence**: Use standard nucleotide codes (A, U, G, C)
- **Protein Sequence**: Use standard single-letter amino acid codes (GAVLIFWYDNEKQMSTCPHR)
## 🔬 Understanding Results
### Contact Heatmap
- **X-axis**: Protein residue positions (e.g., M1, D2, V3...)
- **Y-axis**: RNA nucleotide positions (e.g., G1, G2, G3...)
- **Color Intensity**: Contact probability (0.0 to 1.0)
- **Red Colors**: Higher contact probability
- **White/Light**: Lower or no contact probability
### Contact Pairs Table
Lists all predicted contacts above the selected threshold, showing:
- **RNA**: Nucleotide position and type
- **Protein**: Residue position and type
- **Probability**: Contact prediction confidence (0.0-1.0)
### Threshold Control
Use the **Contact Probability Threshold** slider to:
- Filter contacts by minimum probability
- Focus on high-confidence predictions
- Explore different confidence levels
- Click **"Reset to Default"** to return to the minimum non-zero value
## 📥 Download Options
The results package (ZIP file) contains:
1. **`*_heatmap.csv`**: Complete contact probability matrix
- Rows: RNA nucleotides
- Columns: Protein residues
- Values: Contact probabilities
2. **`*_contact_pairs.csv`**: All contact pairs above zero probability
- RNA: Nucleotide identifier
- Protein: Residue identifier
- Probability: Contact prediction score
## ⚡ Performance Guidelines
- **Processing Time**: Scales quadratically with sequence length
### Quality Considerations
- Higher probabilities indicate more confident predictions
- Consider biological context when interpreting results
- Cross-validate important contacts with experimental data
## 🔧 Troubleshooting
### Common Issues
**Invalid Characters Error:**
- RNA: Only A, U, G, C are allowed
- Protein: Only standard 20 amino acids are supported
- Check for lowercase letters, numbers, or special characters
**File Format Error:**
- Ensure FASTA format: `>ID\\nSEQUENCE`
- Use period (.) to separate RNA and protein sequences
- Check file encoding (UTF-8 recommended)
**Empty Results:**
- Very short sequences may produce no significant contacts
- Try lowering the probability threshold
- Verify sequence quality and biological relevance
## 📊 Interpretation Guidelines
### High-Confidence Predictions (≥0.7)
- Strong likelihood of direct contact
- Priority targets for experimental validation
- Suitable for structural modeling constraints
### Medium-Confidence Predictions (0.3-0.7)
- Moderate likelihood of interaction
- Consider in context with other evidence
- Useful for identifying interaction regions
### Low-Confidence Predictions (<0.3)
- May represent weak or indirect interactions
- Use with caution for biological interpretation
- Good for exploratory analysis
## 🔬 Technical Details
### Model Architecture
- Based on attention mechanisms and transformer models
- Trained on experimentally validated RNA-protein complexes
- Uses one-hot encoding for sequence representation
- Applies contact partner constraints for biological realism
### Validation Metrics
- Cross-validated on diverse RNA-protein complex datasets
- Performance metrics available in the original publication
- Benchmarked against existing prediction methods
### 📊 Difference between current demo and final model
| Model Type | Checkpoint File | auROC (VL-49) | LLM embeddings |
|---------------------|---------------------------|---------------|-------------------|
| OH + RP_Emb (final) | `model_roc_0_38=0.845.pt` | 0.845 | ✓ |
| OH (demo) | `model_roc_0_56=0.779.pt` | 0.779 | ✗ |
## 📚 Citation & Contact
If you use this tool in your research, please cite:
**Jiang, J., Zhang, X., Zhan, J., Miao, Z., & Zhou, Y. (2025). RPcontact: Improved prediction of RNA-protein contacts using RNA and protein language models. bioRxiv, 2025-06.**
### Contact Information
For technical issues, feature requests, or collaboration inquiries, please contact the development team.
- **Primary Contact**: Jiuhong Jiang
- **Email**: [email protected]
- **Institution**: ShanghaiTech University, Shanghai, China
---
<p align="center"><em>Making RNA-protein interaction prediction accessible and accurate for the research community.</em></p>
""")
# Hidden state to store prediction results
result_state = gr.State()
# Event handlers
def toggle_inputs(method):
"""Toggle input visibility based on selected method"""
if method == "Upload FASTA File":
return gr.update(visible=True), gr.update(visible=False), gr.update(visible=False)
else:
return gr.update(visible=False), gr.update(visible=True), gr.update(visible=True)
# Input method change
input_method.change(
fn=toggle_inputs,
inputs=[input_method],
outputs=[fasta_input, rna_input, protein_input]
)
# Prediction button
predict_btn.click(
fn=process_prediction,
inputs=[fasta_input, rna_input, protein_input, input_method],
outputs=[
status_output,
heatmap_plot,
contact_table,
contact_info,
download_btn,
result_state,
threshold_slider
]
)
# Threshold slider change
threshold_slider.change(
fn=update_results_with_threshold,
inputs=[threshold_slider, result_state],
outputs=[heatmap_plot, contact_table, contact_info]
)
# Reset button
reset_btn.click(
fn=reset_threshold,
inputs=[result_state],
outputs=[threshold_slider]
)
return app
# Initialize predictor
predictor = RPContactPredictor()
if __name__ == "__main__":
app = create_interface()
app.launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
debug=True
) |