File size: 7,474 Bytes
b8c24aa 3a82207 63b82b4 c8fdb3b 3a82207 4e81072 7dc3087 31350b4 deaeb85 00f3401 08c1bd3 31350b4 bc30e1c c50d196 a77d753 31350b4 536effb 160f6d0 a1f83cd 160f6d0 31350b4 47ceafa 31350b4 d2f3905 31350b4 7dc3087 ea9c0d3 7115ad7 a9c8381 ea9c0d3 7dc3087 31350b4 4e309e2 63b82b4 c7f7d96 31350b4 47ceafa 31350b4 47ceafa 31350b4 3a82207 31350b4 47ceafa 31350b4 00f3401 31350b4 00f3401 31350b4 3a82207 31350b4 3a82207 31350b4 3a82207 63b82b4 31350b4 63b82b4 e2534da 63b82b4 00f3401 63b82b4 ea9c0d3 63b82b4 9a34670 63b82b4 f9d31d0 63b82b4 3a82207 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 |
import gradio as gr
import torch
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
TextIteratorStreamer,
)
import os
from threading import Thread
import spaces
import time
import langchain
import os
import glob
import gc
# loaders
from langchain.document_loaders import PyPDFLoader, DirectoryLoader
# splits
from langchain.text_splitter import RecursiveCharacterTextSplitter
# prompts
from langchain import PromptTemplate
# vector stores
from langchain_community.vectorstores import FAISS
# models
from langchain.llms import HuggingFacePipeline
from langchain.embeddings import HuggingFaceInstructEmbeddings
# retrievers
from langchain.chains import RetrievalQA
import subprocess
subprocess.run(
"pip install flash-attn --no-build-isolation",
env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
shell=True,
)
class CFG:
DEBUG = False
### LLM
model_name = 'justinj92/phi3-orpo'
temperature = 0.7
top_p = 0.90
repetition_penalty = 1.15
max_len = 8192
max_new_tokens = 512
### splitting
split_chunk_size = 800
split_overlap = 400
### embeddings
embeddings_model_repo = 'BAAI/bge-base-en-v1.5'
### similar passages
k = 6
### paths
PDFs_path = './data'
Embeddings_path = './embeddings/input'
Output_folder = './ml-papers-vector'
loader = DirectoryLoader(CFG.PDFs_path, glob="*.pdf", loader_cls=PyPDFLoader)
documents = loader.load()
text_splitter = RecursiveCharacterTextSplitter(chunk_size = CFG.split_chunk_size, chunk_overlap = CFG.split_overlap)
texts = text_splitter.split_documents(documents)
if not os.path.exists(CFG.Embeddings_path + '/index.faiss'):
embeddings = HuggingFaceInstructEmbeddings(model_name = CFG.embeddings_model_repo, model_kwargs={"device":"cuda"})
vectordb = FAISS.from_documents(documents=texts, embedding=embeddings)
vectordb.save_local(f"{CFG.Output_folder}/faiss_index_ml_papers")
embeddings = HuggingFaceInstructEmbeddings(model_name = CFG.embeddings_model_repo, model_kwargs={"device":"cuda"})
vectordb = FAISS.load_local(CFG.Output_folder + '/faiss_index_ml_papers', embeddings, allow_dangerous_deserialization=True)
@spaces.GPU
def build_model(model_repo = CFG.model_name):
tokenizer = AutoTokenizer.from_pretrained(model_repo)
model = AutoModelForCausalLM.from_pretrained(model_repo, attn_implementation="flash_attention_2", torch_dtype=torch.bfloat16)
return tokenizer, model
tok, model = build_model(model_repo = CFG.model_name)
terminators = [
tok.eos_token_id,
32007,
32011,
32001,
32000
]
# if torch.cuda.is_available():
# device = torch.device("cuda")
# print(f"Using GPU: {torch.cuda.get_device_name(device)}")
# else:
# device = torch.device("cpu")
# print("Using CPU")
model = model.to(device)
pipe = pipeline(task="text-generation", model=model, tokenizer=tok, eos_token_id=terminators, do_sample=True, max_new_tokens=CFG.max_new_tokens, temperature=CFG.temperature, top_p=CFG.top_p, repetition_penalty=CFG.repetition_penalty)
llm = HuggingFacePipeline(pipeline = pipe)
prompt_template = """
<|system|>
You are an expert assistant that answers questions about machine learning and Large Language Models (LLMs).
You are given some extracted parts from machine learning papers along with a question.
If you don't know the answer, just say "I don't know." Don't try to make up an answer.
It is very important that you ALWAYS answer the question in the same language the question is in. Remember to always do that.
Use only the following pieces of context to answer the question at the end.
<|end|>
<|user|>
Context: {context}
Question is below. Remember to answer in the same language:
Question: {question}
<|end|>
<|assistant|>
"""
PROMPT = PromptTemplate(
template = prompt_template,
input_variables = ["context", "question"]
)
retriever = vectordb.as_retriever(
search_type = "similarity",
search_kwargs = {"k": CFG.k}
)
qa_chain = RetrievalQA.from_chain_type(
llm = llm,
chain_type = "stuff", # map_reduce, map_rerank, stuff, refine
retriever = retriever,
chain_type_kwargs = {"prompt": PROMPT},
return_source_documents = True,
verbose = False
)
@spaces.GPU
def wrap_text_preserve_newlines(text, width=1500):
# Split the input text into lines based on newline characters
lines = text.split('\n')
# Wrap each line individually
wrapped_lines = [textwrap.fill(line, width=width) for line in lines]
# Join the wrapped lines back together using newline characters
wrapped_text = '\n'.join(wrapped_lines)
return wrapped_text
@spaces.GPU
def process_llm_response(llm_response):
ans = wrap_text_preserve_newlines(llm_response['result'])
sources_used = ' \n'.join(
[
source.metadata['source'].split('/')[-1][:-4]
+ ' - page: '
+ str(source.metadata['page'])
for source in llm_response['source_documents']
]
)
ans = ans + '\n\nSources: \n' + sources_used
### return only the text after the pattern
pattern = "<|assistant|>"
index = ans.find(pattern)
if index != -1:
ans = ans[index + len(pattern):]
return ans.strip()
@spaces.GPU
def llm_ans(query):
llm_response = qa_chain.invoke(query)
ans = process_llm_response(llm_response)
return ans
# @spaces.GPU(duration=60)
# def chat(message, history, temperature, do_sample, max_tokens):
# chat = [{"role": "system", "content": "You are ORPO Tuned Phi Beast. Answer all questions in the most helpful way. No yapping."}]
# for item in history:
# chat.append({"role": "user", "content": item[0]})
# if item[1] is not None:
# chat.append({"role": "assistant", "content": item[1]})
# chat.append({"role": "user", "content": message})
# messages = tok.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
# model_inputs = tok([messages], return_tensors="pt").to(device)
# streamer = TextIteratorStreamer(
# tok, timeout=20.0, skip_prompt=True, skip_special_tokens=True
# )
# generate_kwargs = dict(
# model_inputs,
# streamer=streamer,
# max_new_tokens=max_tokens,
# do_sample=True,
# temperature=temperature,
# eos_token_id=terminators,
# )
# if temperature == 0:
# generate_kwargs["do_sample"] = False
# t = Thread(target=model.generate, kwargs=generate_kwargs)
# t.start()
# partial_text = ""
# for new_text in streamer:
# partial_text += new_text
# yield partial_text
# yield partial_text
demo = gr.ChatInterface(
fn=llm_ans,
examples=[["Write me a poem about Machine Learning."]],
# multimodal=False,
additional_inputs_accordion=gr.Accordion(
label="⚙️ Parameters", open=False, render=False
),
additional_inputs=[
gr.Slider(
minimum=0, maximum=1, step=0.1, value=0.9, label="Temperature", render=False
),
gr.Checkbox(label="Sampling", value=True),
gr.Slider(
minimum=128,
maximum=4096,
step=1,
value=512,
label="Max new tokens",
render=False,
),
],
stop_btn="Stop Generation",
title="Chat With LLMs",
description="Now Running Phi3-ORPO",
)
demo.launch()
|