embedding / embedding.py
jwlee-ai's picture
test
e9502c9
from langchain.embeddings import HuggingFaceEmbeddings
from langchain_community.document_loaders import PyPDFDirectoryLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import ElasticsearchStore
class PDFEmbedding:
def __init__(self, model_path="dragonkue/BGE-m3-ko", pdf_dir="./data/pdf", es_url="http://localhost:9200", index_name="pdf_embeddings"):
self.embeddings = HuggingFaceEmbeddings(
model_name=model_path,
model_kwargs={'device': 'cuda:0'},
encode_kwargs={'normalize_embeddings': True}
)
self.pdf_dir = pdf_dir
self.es_url = es_url
self.index_name = index_name
def load_pdf_directory(self):
loader = PyPDFDirectoryLoader(self.pdf_dir)
pages = loader.load()
# ์ค„๋ฐ”๊ฟˆ ๋…ธ์ด์ฆˆ ์ •๋ฆฌ
for page in pages:
# ํ•˜์ดํ”ˆ์œผ๋กœ ์ค„๋ฐ”๊ฟˆ๋œ ๋‹จ์–ด ๋ณต์›
page.page_content = page.page_content.replace("-\n", "")
# ์ผ๋ฐ˜ ์ค„๋ฐ”๊ฟˆ์€ ๊ณต๋ฐฑ์œผ๋กœ ๋ณ€ํ™˜
page.page_content = page.page_content.replace("\n", " ")
return pages
def split_documents(self, documents):
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=400,
chunk_overlap=50,
length_function=len,
separators=[r"\n{2,}", r"\n", r"[.!?]", r"[,;:]", r" "],
is_separator_regex=True
)
return text_splitter.split_documents(documents)
def process_and_store(self):
# PDF ๋กœ๋“œ
pdf_data = self.load_pdf_directory()
# ๋ฌธ์„œ ๋ถ„ํ• 
chunks = self.split_documents(pdf_data)
# Elasticsearch ๋ฒกํ„ฐ ์Šคํ† ์–ด ์ƒ์„ฑ
vectorstore = ElasticsearchStore(
es_url=self.es_url,
index_name=self.index_name,
embedding=self.embeddings
)
# ๋ฌธ์„œ ์ €์žฅ
vectorstore.add_documents(chunks)