Spaces:
Running
Running
| # Commands | |
| ## Inference | |
| You can modify corresponding config files to change the inference settings. See more details [here](/docs/structure.md#inference-config-demos). | |
| ### Inference with DiT pretrained on ImageNet | |
| The following command automatically downloads the pretrained weights on ImageNet and runs inference. | |
| ```bash | |
| python scripts/inference.py configs/dit/inference/1x256x256-class.py --ckpt-path DiT-XL-2-256x256.pt | |
| ``` | |
| ### Inference with Latte pretrained on UCF101 | |
| The following command automatically downloads the pretrained weights on UCF101 and runs inference. | |
| ```bash | |
| python scripts/inference.py configs/latte/inference/16x256x256-class.py --ckpt-path Latte-XL-2-256x256-ucf101.pt | |
| ``` | |
| ### Inference with PixArt-α pretrained weights | |
| Download T5 into `./pretrained_models` and run the following command. | |
| ```bash | |
| # 256x256 | |
| torchrun --standalone --nproc_per_node 1 scripts/inference.py configs/pixart/inference/1x256x256.py --ckpt-path PixArt-XL-2-256x256.pth | |
| # 512x512 | |
| torchrun --standalone --nproc_per_node 1 scripts/inference.py configs/pixart/inference/1x512x512.py --ckpt-path PixArt-XL-2-512x512.pth | |
| # 1024 multi-scale | |
| torchrun --standalone --nproc_per_node 1 scripts/inference.py configs/pixart/inference/1x1024MS.py --ckpt-path PixArt-XL-2-1024MS.pth | |
| ``` | |
| ### Inference with checkpoints saved during training | |
| During training, an experiment logging folder is created in `outputs` directory. Under each checpoint folder, e.g. `epoch12-global_step2000`, there is a `ema.pt` and the shared `model` folder. Run the following command to perform inference. | |
| ```bash | |
| # inference with ema model | |
| torchrun --standalone --nproc_per_node 1 scripts/inference.py configs/opensora/inference/16x256x256.py --ckpt-path outputs/001-STDiT-XL-2/epoch12-global_step2000/ema.pt | |
| # inference with model | |
| torchrun --standalone --nproc_per_node 1 scripts/inference.py configs/opensora/inference/16x256x256.py --ckpt-path outputs/001-STDiT-XL-2/epoch12-global_step2000 | |
| # inference with sequence parallelism | |
| # sequence parallelism is enabled automatically when nproc_per_node is larger than 1 | |
| torchrun --standalone --nproc_per_node 2 scripts/inference.py configs/opensora/inference/16x256x256.py --ckpt-path outputs/001-STDiT-XL-2/epoch12-global_step2000 | |
| ``` | |
| The second command will automatically generate a `model_ckpt.pt` file in the checkpoint folder. | |
| ### Inference Hyperparameters | |
| 1. DPM-solver is good at fast inference for images. However, the video result is not satisfactory. You can use it for fast demo purpose. | |
| ```python | |
| type="dmp-solver" | |
| num_sampling_steps=20 | |
| ``` | |
| 1. You can use [SVD](https://huggingface.co/stabilityai/stable-video-diffusion-img2vid-xt)'s finetuned VAE decoder on videos for inference (consumes more memory). However, we do not see significant improvement in the video result. To use it, download [the pretrained weights](https://huggingface.co/maxin-cn/Latte/tree/main/t2v_required_models/vae_temporal_decoder) into `./pretrained_models/vae_temporal_decoder` and modify the config file as follows. | |
| ```python | |
| vae = dict( | |
| type="VideoAutoencoderKLTemporalDecoder", | |
| from_pretrained="pretrained_models/vae_temporal_decoder", | |
| ) | |
| ## Training | |
| To resume training, run the following command. ``--load`` different from ``--ckpt-path`` as it loads the optimizer and dataloader states. | |
| ```bash | |
| torchrun --nnodes=1 --nproc_per_node=8 scripts/train.py configs/opensora/train/64x512x512.py --data-path YOUR_CSV_PATH --load YOUR_PRETRAINED_CKPT | |
| ``` | |
| To enable wandb logging, add `--wandb` to the command. | |
| ```bash | |
| WANDB_API_KEY=YOUR_WANDB_API_KEY torchrun --nnodes=1 --nproc_per_node=8 scripts/train.py configs/opensora/train/64x512x512.py --data-path YOUR_CSV_PATH --wandb True | |
| ``` | |
| You can modify corresponding config files to change the training settings. See more details [here](/docs/structure.md#training-config-demos). | |
| ### Training Hyperparameters | |
| 1. `dtype` is the data type for training. Only `fp16` and `bf16` are supported. ColossalAI automatically enables the mixed precision training for `fp16` and `bf16`. During training, we find `bf16` more stable. | |