server / app.py
3v324v23's picture
v1
6220bad
raw
history blame
4.45 kB
import gradio as gr
from huggingface_hub import InferenceClient
from typing import List, Dict, Optional
# Your endpoint root (no trailing /v1 here; the client adds it for chat)
ENDPOINT_URL = "https://x6leavj4hgm2fdyx.us-east-2.aws.endpoints.huggingface.cloud/v1/"
def respond(
user_msg: str,
history: List[Dict[str, str]],
system_message: str,
max_tokens: int,
temperature: float,
top_p: float,
hf_token: Optional[gr.OAuthToken], # from LoginButton (kept)
pat_override: str, # NEW: user-pasted PAT (password field)
):
"""
Use PAT override if provided; otherwise fall back to LoginButton token.
NOTE: OAuth token from LoginButton usually lacks `inference.endpoints.infer.write`,
so for Inference Endpoints you almost always need to paste a PAT here.
"""
# Choose a token: prefer user-supplied PAT with endpoints write scope
token = pat_override.strip() or (getattr(hf_token, "token", None) if hf_token else None)
if not token:
yield "πŸ”’ Please click **Login** OR paste a **Hugging Face PAT** with `inference.endpoints.infer.write`."
return
client = InferenceClient(base_url=ENDPOINT_URL, token=token)
# Build messages (OpenAI-style)
messages = []
if system_message:
messages.append({"role": "system", "content": system_message})
messages.extend(history or [])
messages.append({"role": "user", "content": user_msg})
# Try OpenAI-compatible chat route first: /v1/chat/completions
try:
out = ""
for chunk in client.chat_completion(
messages=messages,
max_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
stream=True,
):
tok = ""
if getattr(chunk, "choices", None) and getattr(chunk.choices[0], "delta", None):
tok = chunk.choices[0].delta.content or ""
out += tok
yield out
return
except Exception as e_chat:
chat_err = str(e_chat)
# Fallback to plain generation (for non-OpenAI runtimes)
try:
def to_prompt(msgs: List[Dict[str, str]]) -> str:
lines = []
for m in msgs:
role = m.get("role", "user")
content = m.get("content", "")
tag = {"system": "SYSTEM", "user": "USER"}.get(role, "ASSISTANT")
lines.append(f"[{tag}] {content}")
lines.append("[ASSISTANT]")
return "\n".join(lines)
prompt = to_prompt(messages)
out = ""
for tok in client.text_generation(
prompt,
max_new_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
stream=True,
return_full_text=False,
):
piece = getattr(tok, "token", tok)
if isinstance(piece, dict) and "text" in piece:
piece = piece["text"]
out += str(piece)
yield out
except Exception as e_gen:
yield (
"❗ Endpoint call failed.\n\n"
f"β€’ Chat API error: {chat_err}\n"
f"β€’ Text-generation fallback error: {e_gen}\n\n"
"Most likely cause: the token used does NOT have `inference.endpoints.infer.write`.\n"
"Paste a PAT with that scope in the sidebar."
)
# --- UI ---
chat = gr.ChatInterface(
respond,
type="messages",
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(1, 4096, value=512, step=1, label="Max new tokens"),
gr.Slider(0.0, 4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(0.0, 1.0, value=0.95, step=0.05, label="Top-p"),
# NEW: secure PAT override
gr.Textbox(value="", label="HF PAT (with `inference.endpoints.infer.write`)", type="password"),
],
)
with gr.Blocks() as demo:
with gr.Sidebar():
gr.Markdown("### Hugging Face Login (optional)")
gr.LoginButton()
gr.Markdown(
"**Important:** Inference Endpoints require a PAT with\n"
"`inference.endpoints.infer.write`. The Login token usually does **not** have this.\n"
"Paste a PAT in the password field if you see 403 errors."
)
gr.Markdown(f"**Endpoint**: `{ENDPOINT_URL}`")
chat.render()
if __name__ == "__main__":
demo.launch()