Spaces:
Running
Running
import gradio as gr | |
import torch | |
import random | |
from diffusers import DiffusionPipeline | |
from transformers import pipeline | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 | |
MAX_SEED = 2**32 - 1 | |
# --- Model lists --- | |
image_models = { | |
"Stable Diffusion 1.5": "runwayml/stable-diffusion-v1-5", | |
"Stable Diffusion 2.1": "stabilityai/stable-diffusion-2-1", | |
"SDXL Base 1.0": "stabilityai/stable-diffusion-xl-base-1.0", | |
"Playground v2": "playgroundai/playground-v2-1024px-aesthetic", | |
"Kandinsky 3": "kandinsky-community/kandinsky-3", | |
"PixArt": "PixArt-alpha/PixArt-LCM-XL-2-1024-MS", | |
"BLIP Diffusion": "Salesforce/blipdiffusion", | |
"Muse 512": "amused/muse-512-finetuned", | |
"Dreamlike 2.0": "dreamlike-art/dreamlike-photoreal-2.0", | |
"OpenJourney": "prompthero/openjourney" | |
} | |
video_models = { | |
"AnimateDiff": "animate-diff/animate-diff", | |
"CogVideoX-5b": "THUDM/CogVideoX-5b", | |
"HunyuanVideo": "tencent/HunyuanVideo", | |
"LTX-Video": "Lightricks/LTX-Video", | |
"ModelScope T2V": "damo-vilab/modelscope-text-to-video-synthesis", | |
"VideoCrafter": "videocrafter/videocrafter", | |
"Mochi-1": "mochi/mochi-1", | |
"Allegro": "allegro/allegro", | |
"OpenSora": "LanguageBind/Open-Sora-Plan-v1.2.0", | |
"Zer0Scope": "zero-scope/zero-scope" | |
} | |
text_models = { | |
"GPT-2": "gpt2", | |
"GPT-Neo 1.3B": "EleutherAI/gpt-neo-1.3B", | |
"GPT-J 6B": "EleutherAI/gpt-j-6B", | |
"BLOOM 1.1B": "bigscience/bloom-1b1", | |
"Falcon 7B": "tiiuae/falcon-7b", | |
"MPT 7B": "mosaicml/mpt-7b", | |
"LLaMA 2 7B": "meta-llama/Llama-2-7b-hf", | |
"BTLM 3B": "cerebras/btlm-3b-8k-base", | |
"XGen 7B": "Salesforce/xgen-7b-8k-base", | |
"StableLM 2": "stabilityai/stablelm-2-1_6b" | |
} | |
# --- Caching loaded pipelines --- | |
image_pipes = {} | |
text_pipes = {} | |
# --- Functional logic --- | |
def generate_image(prompt, model_name, seed, randomize_seed): | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
generator = torch.manual_seed(seed) | |
if model_name not in image_pipes: | |
image_pipes[model_name] = DiffusionPipeline.from_pretrained( | |
image_models[model_name], | |
torch_dtype=torch_dtype | |
).to(device) | |
pipe = image_pipes[model_name] | |
image = pipe(prompt=prompt, generator=generator, num_inference_steps=25, width=512, height=512).images[0] | |
return image, seed | |
def generate_text(prompt, model_name): | |
if model_name not in text_pipes: | |
text_pipes[model_name] = pipeline("text-generation", model=text_models[model_name], device=0 if device == "cuda" else -1) | |
pipe = text_pipes[model_name] | |
output = pipe(prompt, max_length=100, do_sample=True)[0]['generated_text'] | |
return output | |
def generate_video(prompt, model_name): | |
# Placeholder: real video models would return video frames | |
return f"[Video placeholder] Model: {model_name}\nPrompt: {prompt}" | |
# --- Interface --- | |
with gr.Blocks() as demo: | |
gr.Markdown("# π Multi-Task AI Generator") | |
with gr.Tabs(): | |
# Tab 1: Image Generation | |
with gr.Tab("πΌοΈ Image"): | |
img_prompt = gr.Textbox(label="Prompt") | |
img_model = gr.Dropdown(choices=list(image_models.keys()), value="Stable Diffusion 1.5", label="Select Image Model") | |
img_seed = gr.Slider(0, MAX_SEED, value=42, label="Seed") | |
img_rand = gr.Checkbox(label="Randomize seed", value=True) | |
img_btn = gr.Button("Generate Image") | |
img_out = gr.Image() | |
img_btn.click(fn=generate_image, inputs=[img_prompt, img_model, img_seed, img_rand], outputs=[img_out, img_seed]) | |
# Tab 2: Video Generation | |
with gr.Tab("π₯ Video"): | |
vid_prompt = gr.Textbox(label="Prompt") | |
vid_model = gr.Dropdown(choices=list(video_models.keys()), value="AnimateDiff", label="Select Video Model") | |
vid_btn = gr.Button("Generate Video") | |
vid_out = gr.Textbox(label="Result (Placeholder)") | |
vid_btn.click(fn=generate_video, inputs=[vid_prompt, vid_model], outputs=vid_out) | |
# Tab 3: Text Generation | |
with gr.Tab("π Text"): | |
txt_prompt = gr.Textbox(label="Prompt") | |
txt_model = gr.Dropdown(choices=list(text_models.keys()), value="GPT-2", label="Select Text Model") | |
txt_btn = gr.Button("Generate Text") | |
txt_out = gr.Textbox(label="Generated Text") | |
txt_btn.click(fn=generate_text, inputs=[txt_prompt, txt_model], outputs=txt_out) | |
demo.launch(show_error=True) | |