Spaces:
Running
Running
File size: 4,563 Bytes
78ec26d c4ccad7 7ea27ba c4ccad7 7ea27ba 868b112 c4ccad7 7ea27ba f7bfc02 7ea27ba 3455f8c 7ea27ba 3455f8c 7ea27ba 3455f8c 7ea27ba f7bfc02 7ea27ba 3455f8c 7ea27ba 868b112 7ea27ba 78ec26d 7ea27ba 78ec26d 7ea27ba |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 |
import gradio as gr
import torch
import random
from diffusers import DiffusionPipeline
from transformers import pipeline
device = "cuda" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
MAX_SEED = 2**32 - 1
# --- Model lists ---
image_models = {
"Stable Diffusion 1.5": "runwayml/stable-diffusion-v1-5",
"Stable Diffusion 2.1": "stabilityai/stable-diffusion-2-1",
"SDXL Base 1.0": "stabilityai/stable-diffusion-xl-base-1.0",
"Playground v2": "playgroundai/playground-v2-1024px-aesthetic",
"Kandinsky 3": "kandinsky-community/kandinsky-3",
"PixArt": "PixArt-alpha/PixArt-LCM-XL-2-1024-MS",
"BLIP Diffusion": "Salesforce/blipdiffusion",
"Muse 512": "amused/muse-512-finetuned",
"Dreamlike 2.0": "dreamlike-art/dreamlike-photoreal-2.0",
"OpenJourney": "prompthero/openjourney"
}
video_models = {
"AnimateDiff": "animate-diff/animate-diff",
"CogVideoX-5b": "THUDM/CogVideoX-5b",
"HunyuanVideo": "tencent/HunyuanVideo",
"LTX-Video": "Lightricks/LTX-Video",
"ModelScope T2V": "damo-vilab/modelscope-text-to-video-synthesis",
"VideoCrafter": "videocrafter/videocrafter",
"Mochi-1": "mochi/mochi-1",
"Allegro": "allegro/allegro",
"OpenSora": "LanguageBind/Open-Sora-Plan-v1.2.0",
"Zer0Scope": "zero-scope/zero-scope"
}
text_models = {
"GPT-2": "gpt2",
"GPT-Neo 1.3B": "EleutherAI/gpt-neo-1.3B",
"GPT-J 6B": "EleutherAI/gpt-j-6B",
"BLOOM 1.1B": "bigscience/bloom-1b1",
"Falcon 7B": "tiiuae/falcon-7b",
"MPT 7B": "mosaicml/mpt-7b",
"LLaMA 2 7B": "meta-llama/Llama-2-7b-hf",
"BTLM 3B": "cerebras/btlm-3b-8k-base",
"XGen 7B": "Salesforce/xgen-7b-8k-base",
"StableLM 2": "stabilityai/stablelm-2-1_6b"
}
# --- Caching loaded pipelines ---
image_pipes = {}
text_pipes = {}
# --- Functional logic ---
def generate_image(prompt, model_name, seed, randomize_seed):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.manual_seed(seed)
if model_name not in image_pipes:
image_pipes[model_name] = DiffusionPipeline.from_pretrained(
image_models[model_name],
torch_dtype=torch_dtype
).to(device)
pipe = image_pipes[model_name]
image = pipe(prompt=prompt, generator=generator, num_inference_steps=25, width=512, height=512).images[0]
return image, seed
def generate_text(prompt, model_name):
if model_name not in text_pipes:
text_pipes[model_name] = pipeline("text-generation", model=text_models[model_name], device=0 if device == "cuda" else -1)
pipe = text_pipes[model_name]
output = pipe(prompt, max_length=100, do_sample=True)[0]['generated_text']
return output
def generate_video(prompt, model_name):
# Placeholder: real video models would return video frames
return f"[Video placeholder] Model: {model_name}\nPrompt: {prompt}"
# --- Interface ---
with gr.Blocks() as demo:
gr.Markdown("# π Multi-Task AI Generator")
with gr.Tabs():
# Tab 1: Image Generation
with gr.Tab("πΌοΈ Image"):
img_prompt = gr.Textbox(label="Prompt")
img_model = gr.Dropdown(choices=list(image_models.keys()), value="Stable Diffusion 1.5", label="Select Image Model")
img_seed = gr.Slider(0, MAX_SEED, value=42, label="Seed")
img_rand = gr.Checkbox(label="Randomize seed", value=True)
img_btn = gr.Button("Generate Image")
img_out = gr.Image()
img_btn.click(fn=generate_image, inputs=[img_prompt, img_model, img_seed, img_rand], outputs=[img_out, img_seed])
# Tab 2: Video Generation
with gr.Tab("π₯ Video"):
vid_prompt = gr.Textbox(label="Prompt")
vid_model = gr.Dropdown(choices=list(video_models.keys()), value="AnimateDiff", label="Select Video Model")
vid_btn = gr.Button("Generate Video")
vid_out = gr.Textbox(label="Result (Placeholder)")
vid_btn.click(fn=generate_video, inputs=[vid_prompt, vid_model], outputs=vid_out)
# Tab 3: Text Generation
with gr.Tab("π Text"):
txt_prompt = gr.Textbox(label="Prompt")
txt_model = gr.Dropdown(choices=list(text_models.keys()), value="GPT-2", label="Select Text Model")
txt_btn = gr.Button("Generate Text")
txt_out = gr.Textbox(label="Generated Text")
txt_btn.click(fn=generate_text, inputs=[txt_prompt, txt_model], outputs=txt_out)
demo.launch(show_error=True)
|