Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,138 +1,88 @@
|
|
1 |
-
import torch
|
2 |
import gradio as gr
|
3 |
import numpy as np
|
4 |
import random
|
|
|
|
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
# Global pipeline holders
|
20 |
-
TXT2IMG_PIPE = None
|
21 |
-
IMG2IMG_PIPE = None
|
22 |
-
TXT2VID_PIPE = None
|
23 |
-
IMG2VID_PIPE = None
|
24 |
|
25 |
-
#
|
26 |
-
|
27 |
-
|
28 |
-
pipe.to(device)
|
29 |
-
return pipe
|
30 |
|
31 |
-
#
|
32 |
-
|
33 |
-
global TXT2IMG_PIPE
|
34 |
-
if TXT2IMG_PIPE is None:
|
35 |
-
TXT2IMG_PIPE = make_pipe(StableDiffusionPipeline, "stabilityai/stable-diffusion-2-1-base")
|
36 |
-
if randomize_seed:
|
37 |
-
seed = random.randint(0, MAX_SEED)
|
38 |
-
generator = torch.manual_seed(seed)
|
39 |
-
image = TXT2IMG_PIPE(prompt=prompt, num_inference_steps=20, generator=generator).images[0]
|
40 |
-
return image, seed
|
41 |
|
42 |
-
#
|
43 |
-
|
44 |
-
global IMG2IMG_PIPE
|
45 |
-
if IMG2IMG_PIPE is None:
|
46 |
-
IMG2IMG_PIPE = make_pipe(StableDiffusionInstructPix2PixPipeline, "timbrooks/instruct-pix2pix")
|
47 |
-
if randomize_seed:
|
48 |
-
seed = random.randint(0, MAX_SEED)
|
49 |
-
generator = torch.manual_seed(seed)
|
50 |
-
out = IMG2IMG_PIPE(prompt=prompt, image=image, num_inference_steps=8, generator=generator)
|
51 |
-
return out.images[0], seed
|
52 |
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
|
|
|
|
63 |
|
64 |
-
|
65 |
-
|
66 |
-
global IMG2VID_PIPE
|
67 |
-
if IMG2VID_PIPE is None:
|
68 |
-
IMG2VID_PIPE = make_pipe(
|
69 |
-
StableVideoDiffusionPipeline,
|
70 |
-
"stabilityai/stable-video-diffusion-img2vid-xt"
|
71 |
-
)
|
72 |
if randomize_seed:
|
73 |
seed = random.randint(0, MAX_SEED)
|
74 |
-
generator = torch.manual_seed(seed)
|
75 |
-
|
76 |
-
|
77 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
|
79 |
-
# Gradio
|
80 |
with gr.Blocks() as demo:
|
81 |
-
gr.Markdown("#
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
)
|
96 |
-
|
97 |
-
# Image → Image
|
98 |
-
with gr.Tab("Image → Image"):
|
99 |
-
image_in = gr.Image(label="Input Image")
|
100 |
-
prompt_img = gr.Textbox(label="Edit Prompt")
|
101 |
-
btn_img2img = gr.Button("Generate")
|
102 |
-
result_img2 = gr.Image()
|
103 |
-
seed_img = gr.Slider(0, MAX_SEED, value=123, label="Seed")
|
104 |
-
rand_img = gr.Checkbox(label="Randomize seed", value=True)
|
105 |
-
btn_img2img.click(
|
106 |
-
generate_image_from_image_and_prompt,
|
107 |
-
inputs=[image_in, prompt_img, seed_img, rand_img],
|
108 |
-
outputs=[result_img2, seed_img]
|
109 |
-
)
|
110 |
-
|
111 |
-
# Text → Video
|
112 |
-
with gr.Tab("Text → Video"):
|
113 |
-
prompt_vid = gr.Textbox(label="Prompt")
|
114 |
-
btn_txt2vid = gr.Button("Generate")
|
115 |
-
result_vid = gr.Video()
|
116 |
-
seed_vid = gr.Slider(0, MAX_SEED, value=555, label="Seed")
|
117 |
-
rand_vid = gr.Checkbox(label="Randomize seed", value=True)
|
118 |
-
btn_txt2vid.click(
|
119 |
-
generate_video_from_text,
|
120 |
-
inputs=[prompt_vid, seed_vid, rand_vid],
|
121 |
-
outputs=[result_vid, seed_vid]
|
122 |
-
)
|
123 |
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
seed_vid2 = gr.Slider(0, MAX_SEED, value=999, label="Seed")
|
130 |
-
rand_vid2 = gr.Checkbox(label="Randomize seed", value=True)
|
131 |
-
btn_img2vid.click(
|
132 |
-
generate_video_from_image,
|
133 |
-
inputs=[image_vid, seed_vid2, rand_vid2],
|
134 |
-
outputs=[result_vid2, seed_vid2]
|
135 |
-
)
|
136 |
|
137 |
-
|
138 |
-
demo.launch(
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import random
|
4 |
+
import torch
|
5 |
+
from diffusers import DiffusionPipeline
|
6 |
|
7 |
+
# Define available models and their corresponding Hugging Face repositories
|
8 |
+
MODEL_REPOS = {
|
9 |
+
"Stable Diffusion XL Base 1.0": "stabilityai/stable-diffusion-xl-base-1.0",
|
10 |
+
"SDXL-Turbo": "stabilityai/sdxl-turbo",
|
11 |
+
"Playground v2 1024px Aesthetic": "playgroundai/playground-v2-1024px-aesthetic",
|
12 |
+
"Segmind Vega": "segmind/Segmind-Vega",
|
13 |
+
"SSD-1B": "segmind/SSD-1B",
|
14 |
+
"Kandinsky 3": "kandinsky-community/kandinsky-3",
|
15 |
+
"PixArt-LCM-XL-2-1024-MS": "PixArt-alpha/PixArt-LCM-XL-2-1024-MS",
|
16 |
+
"BLIP Diffusion": "salesforce/blipdiffusion",
|
17 |
+
"Muse-512-Finetuned": "amused/muse-512-finetuned",
|
18 |
+
"Flux 1 Dev": "black-forest-labs/FLUX.1-dev"
|
19 |
+
}
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
+
# Set device
|
22 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
23 |
+
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
|
|
|
|
24 |
|
25 |
+
# Cache for loaded pipelines
|
26 |
+
loaded_pipelines = {}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
+
# Maximum seed value
|
29 |
+
MAX_SEED = np.iinfo(np.int32).max
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
+
def load_pipeline(model_name):
|
32 |
+
"""Load and cache the pipeline for the selected model."""
|
33 |
+
if model_name in loaded_pipelines:
|
34 |
+
return loaded_pipelines[model_name]
|
35 |
+
repo_id = MODEL_REPOS[model_name]
|
36 |
+
try:
|
37 |
+
pipeline = DiffusionPipeline.from_pretrained(repo_id, torch_dtype=torch_dtype)
|
38 |
+
pipeline.to(device)
|
39 |
+
loaded_pipelines[model_name] = pipeline
|
40 |
+
return pipeline
|
41 |
+
except Exception as e:
|
42 |
+
raise RuntimeError(f"Failed to load model '{model_name}': {e}")
|
43 |
|
44 |
+
def generate_image(prompt, model_name, width, height, guidance_scale, num_inference_steps, seed, randomize_seed):
|
45 |
+
"""Generate an image using the selected model and parameters."""
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
if randomize_seed:
|
47 |
seed = random.randint(0, MAX_SEED)
|
48 |
+
generator = torch.Generator(device=device).manual_seed(seed)
|
49 |
+
pipeline = load_pipeline(model_name)
|
50 |
+
try:
|
51 |
+
image = pipeline(
|
52 |
+
prompt=prompt,
|
53 |
+
guidance_scale=guidance_scale,
|
54 |
+
num_inference_steps=num_inference_steps,
|
55 |
+
width=width,
|
56 |
+
height=height,
|
57 |
+
generator=generator
|
58 |
+
).images[0]
|
59 |
+
return image, seed
|
60 |
+
except Exception as e:
|
61 |
+
raise RuntimeError(f"Image generation failed: {e}")
|
62 |
|
63 |
+
# Define the Gradio interface
|
64 |
with gr.Blocks() as demo:
|
65 |
+
gr.Markdown("# 🖼️ Text-to-Image Generator with Multiple Models")
|
66 |
+
with gr.Row():
|
67 |
+
with gr.Column():
|
68 |
+
prompt = gr.Textbox(label="Prompt", placeholder="Enter your prompt here")
|
69 |
+
model_name = gr.Dropdown(label="Select Model", choices=list(MODEL_REPOS.keys()), value="Stable Diffusion XL Base 1.0")
|
70 |
+
width = gr.Slider(label="Width", minimum=256, maximum=1024, step=64, value=512)
|
71 |
+
height = gr.Slider(label="Height", minimum=256, maximum=1024, step=64, value=512)
|
72 |
+
guidance_scale = gr.Slider(label="Guidance Scale", minimum=1.0, maximum=20.0, step=0.5, value=7.5)
|
73 |
+
num_inference_steps = gr.Slider(label="Inference Steps", minimum=1, maximum=100, step=1, value=50)
|
74 |
+
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
|
75 |
+
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
|
76 |
+
generate_button = gr.Button("Generate Image")
|
77 |
+
with gr.Column():
|
78 |
+
output_image = gr.Image(label="Generated Image")
|
79 |
+
output_seed = gr.Textbox(label="Used Seed", interactive=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
|
81 |
+
generate_button.click(
|
82 |
+
fn=generate_image,
|
83 |
+
inputs=[prompt, model_name, width, height, guidance_scale, num_inference_steps, seed, randomize_seed],
|
84 |
+
outputs=[output_image, output_seed]
|
85 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
|
87 |
+
if __name__ == "__main__":
|
88 |
+
demo.launch()
|