Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -7,95 +7,127 @@ from diffusers import (
|
|
7 |
WanPipeline,
|
8 |
)
|
9 |
from diffusers.utils import export_to_video, load_image
|
|
|
|
|
10 |
|
11 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
12 |
dtype = torch.float16 if device == "cuda" else torch.float32
|
|
|
13 |
|
14 |
-
#
|
15 |
-
def make_pipe(cls, model_id, **kwargs):
|
16 |
-
pipe = cls.from_pretrained(model_id, torch_dtype=dtype, **kwargs)
|
17 |
-
pipe.enable_model_cpu_offload()
|
18 |
-
return pipe
|
19 |
-
|
20 |
-
# Global model caches
|
21 |
TXT2IMG_PIPE = None
|
22 |
IMG2IMG_PIPE = None
|
23 |
TXT2VID_PIPE = None
|
24 |
IMG2VID_PIPE = None
|
25 |
|
26 |
-
|
27 |
-
|
|
|
|
|
|
|
|
|
|
|
28 |
global TXT2IMG_PIPE
|
29 |
if TXT2IMG_PIPE is None:
|
30 |
-
TXT2IMG_PIPE = make_pipe(
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
|
|
35 |
|
36 |
-
|
37 |
-
def generate_image_from_image_and_prompt(image, prompt):
|
38 |
global IMG2IMG_PIPE
|
39 |
if IMG2IMG_PIPE is None:
|
40 |
-
IMG2IMG_PIPE = make_pipe(
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
out = IMG2IMG_PIPE(prompt=prompt, image=image, num_inference_steps=8)
|
45 |
-
return out.images[0]
|
46 |
|
47 |
-
|
48 |
-
def generate_video_from_text(prompt):
|
49 |
global TXT2VID_PIPE
|
50 |
if TXT2VID_PIPE is None:
|
51 |
-
TXT2VID_PIPE = make_pipe(
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
frames = TXT2VID_PIPE(prompt=prompt, num_frames=12).frames[0]
|
56 |
-
return export_to_video(frames, "/tmp/wan_video.mp4", fps=8)
|
57 |
|
58 |
-
|
59 |
-
def generate_video_from_image(image):
|
60 |
global IMG2VID_PIPE
|
61 |
if IMG2VID_PIPE is None:
|
62 |
-
IMG2VID_PIPE = make_pipe(
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
).to(device)
|
67 |
image = load_image(image).resize((512, 288))
|
68 |
-
frames = IMG2VID_PIPE(image, num_inference_steps=16).frames[0]
|
69 |
-
return export_to_video(frames, "/tmp/svd_video.mp4", fps=8)
|
70 |
|
71 |
-
#
|
72 |
-
with gr.Blocks() as demo:
|
73 |
-
gr.Markdown("# π§
|
74 |
|
75 |
-
with gr.
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
|
100 |
demo.queue()
|
101 |
demo.launch(show_error=True)
|
|
|
7 |
WanPipeline,
|
8 |
)
|
9 |
from diffusers.utils import export_to_video, load_image
|
10 |
+
import random
|
11 |
+
import numpy as np
|
12 |
|
13 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
14 |
dtype = torch.float16 if device == "cuda" else torch.float32
|
15 |
+
MAX_SEED = np.iinfo(np.int32).max
|
16 |
|
17 |
+
# Model cache
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
TXT2IMG_PIPE = None
|
19 |
IMG2IMG_PIPE = None
|
20 |
TXT2VID_PIPE = None
|
21 |
IMG2VID_PIPE = None
|
22 |
|
23 |
+
def make_pipe(cls, model_id, **kwargs):
|
24 |
+
pipe = cls.from_pretrained(model_id, torch_dtype=dtype, **kwargs)
|
25 |
+
pipe.enable_model_cpu_offload()
|
26 |
+
return pipe
|
27 |
+
|
28 |
+
# Functions
|
29 |
+
def generate_image_from_text(prompt, seed, randomize_seed):
|
30 |
global TXT2IMG_PIPE
|
31 |
if TXT2IMG_PIPE is None:
|
32 |
+
TXT2IMG_PIPE = make_pipe(StableDiffusionPipeline, "stabilityai/stable-diffusion-2-1-base").to(device)
|
33 |
+
if randomize_seed:
|
34 |
+
seed = random.randint(0, MAX_SEED)
|
35 |
+
generator = torch.manual_seed(seed)
|
36 |
+
image = TXT2IMG_PIPE(prompt=prompt, num_inference_steps=20, generator=generator).images[0]
|
37 |
+
return image, seed
|
38 |
|
39 |
+
def generate_image_from_image_and_prompt(image, prompt, seed, randomize_seed):
|
|
|
40 |
global IMG2IMG_PIPE
|
41 |
if IMG2IMG_PIPE is None:
|
42 |
+
IMG2IMG_PIPE = make_pipe(StableDiffusionInstructPix2PixPipeline, "timbrooks/instruct-pix2pix").to(device)
|
43 |
+
if randomize_seed:
|
44 |
+
seed = random.randint(0, MAX_SEED)
|
45 |
+
generator = torch.manual_seed(seed)
|
46 |
+
out = IMG2IMG_PIPE(prompt=prompt, image=image, num_inference_steps=8, generator=generator)
|
47 |
+
return out.images[0], seed
|
48 |
|
49 |
+
def generate_video_from_text(prompt, seed, randomize_seed):
|
|
|
50 |
global TXT2VID_PIPE
|
51 |
if TXT2VID_PIPE is None:
|
52 |
+
TXT2VID_PIPE = make_pipe(WanPipeline, "Wan-AI/Wan2.1-T2V-1.3B-Diffusers").to(device)
|
53 |
+
if randomize_seed:
|
54 |
+
seed = random.randint(0, MAX_SEED)
|
55 |
+
generator = torch.manual_seed(seed)
|
56 |
+
frames = TXT2VID_PIPE(prompt=prompt, num_frames=12, generator=generator).frames[0]
|
57 |
+
return export_to_video(frames, "/tmp/wan_video.mp4", fps=8), seed
|
58 |
|
59 |
+
def generate_video_from_image(image, seed, randomize_seed):
|
|
|
60 |
global IMG2VID_PIPE
|
61 |
if IMG2VID_PIPE is None:
|
62 |
+
IMG2VID_PIPE = make_pipe(StableVideoDiffusionPipeline, "stabilityai/stable-video-diffusion-img2vid-xt", variant="fp16" if dtype == torch.float16 else None).to(device)
|
63 |
+
if randomize_seed:
|
64 |
+
seed = random.randint(0, MAX_SEED)
|
65 |
+
generator = torch.manual_seed(seed)
|
|
|
66 |
image = load_image(image).resize((512, 288))
|
67 |
+
frames = IMG2VID_PIPE(image=image, num_inference_steps=16, generator=generator).frames[0]
|
68 |
+
return export_to_video(frames, "/tmp/svd_video.mp4", fps=8), seed
|
69 |
|
70 |
+
# UI
|
71 |
+
with gr.Blocks(css="footer {display:none !important}") as demo:
|
72 |
+
gr.Markdown("# π§ AI Playground β Multi-Mode Generator")
|
73 |
|
74 |
+
with gr.Tabs():
|
75 |
+
# Text β Image
|
76 |
+
with gr.Tab("Text β Image"):
|
77 |
+
with gr.Row():
|
78 |
+
prompt_txt = gr.Textbox(label="Prompt")
|
79 |
+
generate_btn = gr.Button("Generate")
|
80 |
+
result_img = gr.Image()
|
81 |
+
seed_txt = gr.Slider(0, MAX_SEED, value=42, label="Seed")
|
82 |
+
rand_seed_txt = gr.Checkbox(label="Randomize seed", value=True)
|
83 |
+
generate_btn.click(
|
84 |
+
fn=generate_image_from_text,
|
85 |
+
inputs=[prompt_txt, seed_txt, rand_seed_txt],
|
86 |
+
outputs=[result_img, seed_txt]
|
87 |
+
)
|
88 |
|
89 |
+
# Image β Image
|
90 |
+
with gr.Tab("Image β Image"):
|
91 |
+
with gr.Row():
|
92 |
+
image_in = gr.Image(label="Input Image")
|
93 |
+
prompt_img = gr.Textbox(label="Edit Prompt")
|
94 |
+
generate_btn2 = gr.Button("Generate")
|
95 |
+
result_img2 = gr.Image()
|
96 |
+
seed_img = gr.Slider(0, MAX_SEED, value=123, label="Seed")
|
97 |
+
rand_seed_img = gr.Checkbox(label="Randomize seed", value=True)
|
98 |
+
generate_btn2.click(
|
99 |
+
fn=generate_image_from_image_and_prompt,
|
100 |
+
inputs=[image_in, prompt_img, seed_img, rand_seed_img],
|
101 |
+
outputs=[result_img2, seed_img]
|
102 |
+
)
|
103 |
|
104 |
+
# Text β Video
|
105 |
+
with gr.Tab("Text β Video"):
|
106 |
+
with gr.Row():
|
107 |
+
prompt_vid = gr.Textbox(label="Prompt")
|
108 |
+
generate_btn3 = gr.Button("Generate")
|
109 |
+
result_vid = gr.Video()
|
110 |
+
seed_vid = gr.Slider(0, MAX_SEED, value=555, label="Seed")
|
111 |
+
rand_seed_vid = gr.Checkbox(label="Randomize seed", value=True)
|
112 |
+
generate_btn3.click(
|
113 |
+
fn=generate_video_from_text,
|
114 |
+
inputs=[prompt_vid, seed_vid, rand_seed_vid],
|
115 |
+
outputs=[result_vid, seed_vid]
|
116 |
+
)
|
117 |
|
118 |
+
# Image β Video
|
119 |
+
with gr.Tab("Image β Video"):
|
120 |
+
with gr.Row():
|
121 |
+
image_in_vid = gr.Image(label="Input Image")
|
122 |
+
generate_btn4 = gr.Button("Animate")
|
123 |
+
result_vid2 = gr.Video()
|
124 |
+
seed_vid2 = gr.Slider(0, MAX_SEED, value=999, label="Seed")
|
125 |
+
rand_seed_vid2 = gr.Checkbox(label="Randomize seed", value=True)
|
126 |
+
generate_btn4.click(
|
127 |
+
fn=generate_video_from_image,
|
128 |
+
inputs=[image_in_vid, seed_vid2, rand_seed_vid2],
|
129 |
+
outputs=[result_vid2, seed_vid2]
|
130 |
+
)
|
131 |
|
132 |
demo.queue()
|
133 |
demo.launch(show_error=True)
|