visionary-ai / app.py
kevalfst's picture
Update app.py
bdd1e49 verified
raw
history blame
4.31 kB
import gradio as gr
import torch
import random
from diffusers import DiffusionPipeline
from transformers import pipeline
device = "cuda" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
MAX_SEED = 2**32 - 1
# --- Model lists ordered by size (light to heavy) ---
image_models = {
"Stable Diffusion 1.5 (light)": "runwayml/stable-diffusion-v1-5",
"Stable Diffusion 2.1": "stabilityai/stable-diffusion-2-1",
"Dreamlike 2.0": "dreamlike-art/dreamlike-photoreal-2.0",
"Playground v2": "playgroundai/playground-v2-1024px-aesthetic",
"Muse 512": "amused/muse-512-finetuned",
"PixArt": "PixArt-alpha/PixArt-LCM-XL-2-1024-MS",
"Kandinsky 3": "kandinsky-community/kandinsky-3",
"BLIP Diffusion": "Salesforce/blipdiffusion",
"SDXL Base 1.0 (heavy)": "stabilityai/stable-diffusion-xl-base-1.0",
"OpenJourney (heavy)": "prompthero/openjourney"
}
text_models = {
"GPT-2 (light)": "gpt2",
"GPT-Neo 1.3B": "EleutherAI/gpt-neo-1.3B",
"BLOOM 1.1B": "bigscience/bloom-1b1",
"GPT-J 6B": "EleutherAI/gpt-j-6B",
"Falcon 7B": "tiiuae/falcon-7b",
"XGen 7B": "Salesforce/xgen-7b-8k-base",
"BTLM 3B": "cerebras/btlm-3b-8k-base",
"MPT 7B": "mosaicml/mpt-7b",
"StableLM 2": "stabilityai/stablelm-2-1_6b",
"LLaMA 2 7B (heavy)": "meta-llama/Llama-2-7b-hf"
}
# Cache
image_pipes = {}
text_pipes = {}
def generate_image(prompt, model_name, seed, randomize_seed, progress=gr.Progress(track_tqdm=True)):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.manual_seed(seed)
progress(0, desc="Loading model...")
if model_name not in image_pipes:
image_pipes[model_name] = DiffusionPipeline.from_pretrained(
image_models[model_name],
torch_dtype=torch_dtype
).to(device)
pipe = image_pipes[model_name]
progress(25, desc="Running inference (step 1/3)...")
result = pipe(prompt=prompt, generator=generator, num_inference_steps=30, width=512, height=512)
progress(100, desc="Done.")
return result.images[0], seed
def generate_text(prompt, model_name, progress=gr.Progress(track_tqdm=True)):
progress(0, desc="Loading model...")
if model_name not in text_pipes:
text_pipes[model_name] = pipeline("text-generation", model=text_models[model_name], device=0 if device == "cuda" else -1)
pipe = text_pipes[model_name]
progress(50, desc="Generating text...")
result = pipe(prompt, max_length=100, do_sample=True)[0]['generated_text']
progress(100, desc="Done.")
return result
# Gradio Interface
with gr.Blocks() as demo:
gr.Markdown("# 🧠 Multi-Model AI Playground with Progress")
with gr.Tabs():
# πŸ–ΌοΈ Image Gen Tab
with gr.Tab("πŸ–ΌοΈ Image Generation"):
img_prompt = gr.Textbox(label="Prompt")
img_model = gr.Dropdown(choices=list(image_models.keys()), value="Stable Diffusion 1.5 (light)", label="Image Model")
img_seed = gr.Slider(0, MAX_SEED, value=42, label="Seed")
img_rand = gr.Checkbox(label="Randomize seed", value=True)
img_btn = gr.Button("Generate Image")
img_out = gr.Image()
img_btn.click(fn=generate_image, inputs=[img_prompt, img_model, img_seed, img_rand], outputs=[img_out, img_seed])
# πŸ“ Text Gen Tab
with gr.Tab("πŸ“ Text Generation"):
txt_prompt = gr.Textbox(label="Prompt")
txt_model = gr.Dropdown(choices=list(text_models.keys()), value="GPT-2 (light)", label="Text Model")
txt_btn = gr.Button("Generate Text")
txt_out = gr.Textbox(label="Output Text")
txt_btn.click(fn=generate_text, inputs=[txt_prompt, txt_model], outputs=txt_out)
# πŸŽ₯ Video Gen Tab (placeholder)
with gr.Tab("πŸŽ₯ Video Generation (Placeholder)"):
gr.Markdown("⚠️ Video generation is placeholder only. Models require special setup.")
vid_prompt = gr.Textbox(label="Prompt")
vid_btn = gr.Button("Pretend to Generate")
vid_out = gr.Textbox(label="Result")
vid_btn.click(lambda x: f"Fake video output for: {x}", inputs=[vid_prompt], outputs=[vid_out])
demo.launch(show_error=True)