File size: 7,297 Bytes
a5f781d
c496efe
a5f781d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
# --- Imports ---

import os
import json
import gradio as gr
import matplotlib.pyplot as plt
import tempfile
import io
import re
import networkx as nx
from datetime import datetime
from contextlib import redirect_stdout
from langchain_community.chat_models import ChatOpenAI
from langchain.agents import initialize_agent, Tool, AgentType
from langchain_community.tools import DuckDuckGoSearchRun
import openai

# --- Pre-create rating log file ---
log_filename = "rating_log.txt"
if not os.path.exists(log_filename):
    with open(log_filename, "w", encoding="utf-8") as f:
        f.write("=== Rating Log Initialized ===\n")

# --- Setup API keys ---
openai_api_key = os.environ.get("OPENAI_API_KEY")
if not openai_api_key:
    raise ValueError("OPENAI_API_KEY environment variable is not set.")
llm = ChatOpenAI(temperature=0, model="gpt-4", openai_api_key=openai_api_key)

openrouter_key = os.environ.get("OpenRouter")
openai_rater = openai.OpenAI(api_key=openrouter_key, base_url="https://openrouter.ai/api/v1")

# --- Helpers ---
def safe_file_or_none(path):
    return path if isinstance(path, str) and os.path.isfile(path) else None

def remove_ansi(text):
    return re.sub(r'\x1b\[[0-9;]*m', '', text)

# --- Rating function ---
def rate_answer_rater(question, final_answer):
    try:
        prompt = f"Rate this answer 1-5 stars with explanation:\n\n{final_answer}"
        response = openai_rater.chat.completions.create(
            model="mistral/ministral-8b",
            messages=[{"role": "user", "content": prompt}]
        )
        rating_text = response.choices[0].message.content.strip()
        timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
        with open("rating_log.txt", "a", encoding="utf-8") as log_file:
            log_file.write(f"\n---\nTimestamp: {timestamp}\nQuestion: {question}\nAnswer: {final_answer}\nRating Response: {rating_text}\n")
        return rating_text
    except Exception as e:
        return f"Rating error: {e}"

# --- Word map generation ---
def generate_wordmap(text):
    try:
        from wordcloud import WordCloud
        wc = WordCloud(width=800, height=400, background_color="white").generate(text)
        tmpfile = tempfile.NamedTemporaryFile(suffix=".png", delete=False)
        wc.to_file(tmpfile.name)
        return tmpfile.name
    except Exception as e:
        return None

# --- Reasoning tree generation ---
def generate_reasoning_tree(trace: str):
    try:
        G = nx.DiGraph()
        step = 0
        last_node = "Start"
        G.add_node(last_node)

        for line in trace.splitlines():
            if line.strip():
                step += 1
                node_id = f"Step_{step}"
                G.add_node(node_id, label=line)
                G.add_edge(last_node, node_id)
                last_node = node_id

        pos = nx.spring_layout(G)
        fig, ax = plt.subplots(figsize=(10, 5))
        labels = nx.get_node_attributes(G, 'label')
        nx.draw(G, pos, with_labels=False, node_size=3000, node_color='lightblue', ax=ax)
        nx.draw_networkx_labels(G, pos, labels=labels, font_size=8, ax=ax)
        tmpfile = tempfile.NamedTemporaryFile(suffix=".png", delete=False)
        plt.savefig(tmpfile.name)
        plt.close(fig)
        return tmpfile.name
    except Exception as e:
        return None

# --- Define specialist tools ---

def simple_tool(prompt_prefix):
    return lambda query: llm.predict(f"{prompt_prefix}\n\n{query}")

legal_tool = Tool("LegalAnalystAgent", simple_tool("You are a legal analyst."), "Legal analysis")
financial_tool = Tool("FinancialMarketsAgent", simple_tool("You are a financial markets analyst."), "Financial insights")
lending_tool = Tool("LendingSpecialistAgent", simple_tool("You are a lending specialist."), "Lending guidance")
credit_tool = Tool("CreditSpecialistAgent", simple_tool("You are a credit specialist."), "Credit evaluation")
research_agent = DuckDuckGoSearchRun()
research_tool = Tool("ResearchAgent", research_agent.run, "Web search")

planner_tools = [
    research_tool,
    legal_tool,
    financial_tool,
    lending_tool,
    credit_tool
]

planner_agent = initialize_agent(
    planner_tools,
    llm=llm,
    agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
    verbose=True
)

# --- Main agent logic ---
def agent_query(user_input, selected_agent, retry_threshold):
    try:
        f = io.StringIO()
        with redirect_stdout(f):

            if selected_agent == "Auto":
                result = planner_agent.run(user_input)
                trace_output = f.getvalue()
            else:
                agent_map = {
                    "ResearchAgent": research_agent.run,
                    "LegalAnalystAgent": legal_tool.func,
                    "FinancialMarketsAgent": financial_tool.func,
                    "LendingSpecialistAgent": lending_tool.func,
                    "CreditSpecialistAgent": credit_tool.func
                }
                agent_fn = agent_map.get(selected_agent)
                result = agent_fn(user_input) if agent_fn else "Invalid agent selected."
                trace_output = f.getvalue()

        final_answer_str = result or "(No answer produced.)"
        if "Final Answer:" not in trace_output:
            trace_output += f"\n\nFinal Answer: {final_answer_str}"

        wordmap_path = generate_wordmap(trace_output)
        reasoning_tree_path = generate_reasoning_tree(remove_ansi(trace_output))

        rating_text = rate_answer_rater(user_input, final_answer_str)

        return (
            trace_output + f"\n\n⭐ Rating: {rating_text}",
            wordmap_path,
            reasoning_tree_path,
            gr.update(visible=bool(wordmap_path)),
            gr.update(visible=bool(reasoning_tree_path))
        )

    except Exception as e:
        return f"Error: {e}", None, None, gr.update(visible=False), gr.update(visible=False)

# --- Gradio UI ---

demo = gr.Blocks(theme=gr.themes.Glass())

with demo:
    gr.Markdown("# Financial Services Multi-Agent Assistant")
    gr.Markdown("Select an agent or use Auto for automatic routing.")

    with gr.Row():
        input_box = gr.Textbox(label="Your Question")
    with gr.Row():
        agent_selector = gr.Dropdown(label="Choose Agent", choices=[
            "Auto", "ResearchAgent", "LegalAnalystAgent",
            "FinancialMarketsAgent", "LendingSpecialistAgent", "CreditSpecialistAgent"
        ], value="Auto")
    with gr.Row():
        retry_slider = gr.Slider(label="Retry Rating Threshold", minimum=1.0, maximum=5.0, step=0.1, value=4.0)

    with gr.Row():
        submit_btn = gr.Button("Submit")
        download_btn = gr.File(label="Download Rating Log")

    with gr.Row():
        output_text = gr.Textbox(label="Agent Reasoning + Final Answer", lines=20)

    with gr.Row():
        output_wordmap = gr.Image(label="Word Map", visible=True)
        output_tree_image = gr.Image(label="Reasoning Tree", visible=True)

    submit_btn.click(
        fn=agent_query,
        inputs=[input_box, agent_selector, retry_slider],
        outputs=[
            output_text, output_wordmap, output_tree_image,
            output_wordmap, output_tree_image
        ]
    )

    demo.load(lambda: "rating_log.txt", None, download_btn)

if __name__ == "__main__":
    demo.launch(share=True)