File size: 7,216 Bytes
b17847f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
# === Imports ===
import os
import re
import gradio as gr
import openai
import oci
from datetime import datetime
from bs4 import BeautifulSoup

# --- API Keys ---
openai_api_key = os.environ.get("OPENAI_API_KEY")
if not openai_api_key:
    raise ValueError("OPENAI_API_KEY environment variable is not set.")

client = openai.OpenAI(api_key=openai_api_key)

openrouter_key = os.environ.get("OPENROUTER")
openrouter = openai.OpenAI(api_key=openrouter_key, base_url="https://openrouter.ai/api/v1")

# --- OCI Object Storage Config ---
#oci_config = {
#    "user": os.environ.get("OCI_USER"),
#    "tenancy": os.environ.get("OCI_TENANCY"),
#    "fingerprint": os.environ.get("OCI_FINGERPRINT"),
#    "region": os.environ.get("OCI_REGION"),
#    "key_content": os.environ.get("OCI_PRIVATE_KEY"),
#}

# === OCI Object Storage Setup ===
oci_config = {
    "user": os.environ.get("OCI_USER"),
    "tenancy": os.environ.get("OCI_TENANCY"),
    "fingerprint": os.environ.get("OCI_FINGERPRINT"),
    "region": os.environ.get("OCI_REGION"),
    "key_content": os.environ.get("OCI_PRIVATE_KEY")
}

namespace = os.environ.get("OCI_NAMESPACE")
bucket_name = os.environ.get("OCI_BUCKET_NAME")

try:
    object_storage = oci.object_storage.ObjectStorageClient(oci_config)
except Exception as e:
    print("Failed to initialize OCI Object Storage client:", e)


namespace = os.environ.get("OCI_NAMESPACE")
bucket_name = os.environ.get("OCI_BUCKET_NAME")
object_storage = oci.object_storage.ObjectStorageClient(oci_config)

# --- Exadata Specs ---
exadata_specs = {
    "X7": {"Quarter Rack": {"max_iops": 350000, "max_throughput": 25}, "Half Rack": {"max_iops": 700000, "max_throughput": 50}, "Full Rack": {"max_iops": 1400000, "max_throughput": 100}},
    "X8": {"Quarter Rack": {"max_iops": 380000, "max_throughput": 28}, "Half Rack": {"max_iops": 760000, "max_throughput": 56}, "Full Rack": {"max_iops": 1520000, "max_throughput": 112}},
    "X9": {"Quarter Rack": {"max_iops": 450000, "max_throughput": 30}, "Half Rack": {"max_iops": 900000, "max_throughput": 60}, "Full Rack": {"max_iops": 1800000, "max_throughput": 120}},
    "X10": {"Quarter Rack": {"max_iops": 500000, "max_throughput": 35}, "Half Rack": {"max_iops": 1000000, "max_throughput": 70}, "Full Rack": {"max_iops": 2000000, "max_throughput": 140}},
    "X11M": {"Quarter Rack": {"max_iops": 600000, "max_throughput": 40}, "Half Rack": {"max_iops": 1200000, "max_throughput": 80}, "Full Rack": {"max_iops": 2400000, "max_throughput": 160}},
}

# --- Supported LLM Models ---
supported_llms = {
    "gpt-3.5-turbo": "Fastest / Lowest Cost - General AWR Healthcheck",
    "gpt-4-turbo": "Balanced - Production Performance Analysis",
    "gpt-4o": "Deepest Analysis - Exadata, RAC, Smart Scan, Critical Issues",
}

# --- Utils ---
def clean_awr_content(content):
    if "<html" in content.lower():
        soup = BeautifulSoup(content, "html.parser")
        return soup.get_text()
    return content

def upload_awr_file(file_obj):
    filename = os.path.basename(file_obj.name)
    content = file_obj.read()
    object_storage.put_object(namespace, bucket_name, filename, content)
    return f"\u2705 Uploaded {filename}"

def list_awr_files():
    try:
        objects = object_storage.list_objects(namespace, bucket_name)
        return [obj.name for obj in objects.data.objects if obj.name.endswith(".html") or obj.name.endswith(".txt")]
    except Exception as e:
        return [f"Error listing objects: {str(e)}"]

def get_awr_file_text(filename):
    try:
        response = object_storage.get_object(namespace, bucket_name, filename)
        raw = response.data.content.decode()
        return clean_awr_content(raw)
    except Exception as e:
        return f"Error loading file: {str(e)}"

def compare_awrs(file_list, llm_model):
    if not file_list:
        return "No files selected."
    combined_text = ""
    for fname in file_list:
        content = get_awr_file_text(fname)
        combined_text += f"\n=== AWR: {fname} ===\n{content[:3000]}...\n"
    prompt = f"""
You are a senior Oracle performance engineer. You will compare multiple AWR reports and highlight:
- Key differences in workload or system behavior
- Major trends or anomalies
- Which report shows better performance and why
- Exadata-specific metrics like Smart Scan, Flash I/O
- Suggestions to unify or improve system behavior
AWR Reports:
{combined_text}
"""
    response = client.chat.completions.create(
        model=llm_model,
        messages=[{"role": "system", "content": "You are a comparative AWR analysis expert."},
                  {"role": "user", "content": prompt}]
    )
    return response.choices[0].message.content.strip()

# === Gradio UI ===
with gr.Blocks() as demo:
    with gr.Tab("Manual AWR Analysis"):
        gr.Markdown("# \U0001f9e0 Multi-Agent Oracle AWR Analyzer (Production Edition)")
        awr_text = gr.Textbox(label="Paste AWR Report", lines=30)
        threshold = gr.Slider(0, 5, value=3, step=1, label="Correctness Threshold (Stars)")
        performance_test_mode = gr.Checkbox(label="Performance Test Mode")
        exadata_model = gr.Dropdown(choices=list(exadata_specs.keys()), label="Exadata Model", visible=False)
        rack_size = gr.Dropdown(choices=["Quarter Rack", "Half Rack", "Full Rack"], label="Rack Size", visible=False)
        llm_selector = gr.Dropdown(choices=list(supported_llms.keys()), value="gpt-4-turbo", label="LLM Model")

        def toggle_visibility(mode):
            return gr.update(visible=mode), gr.update(visible=mode)

        performance_test_mode.change(toggle_visibility, inputs=performance_test_mode, outputs=[exadata_model, rack_size])
        analyze_btn = gr.Button("Analyze AWR Report")
        output = gr.Textbox(label="AWR Analysis", lines=20)
        health = gr.Textbox(label="Health Agent Findings", lines=10)
        rating = gr.Textbox(label="Rater", lines=3)
        retry_status = gr.Textbox(label="Retry Status")

        from your_existing_code import process_awr  # Replace with actual import or include function here
        analyze_btn.click(process_awr,
                          inputs=[awr_text, threshold, performance_test_mode, exadata_model, rack_size, llm_selector],
                          outputs=[output, health, rating, retry_status])

    with gr.Tab("Compare AWRs from OCI"):
        upload_file = gr.File(label="Upload AWR Report", file_types=[".html", ".txt"])
        upload_status = gr.Textbox(label="Upload Status")
        upload_file.upload(fn=upload_awr_file, inputs=upload_file, outputs=upload_status)

        refresh_button = gr.Button("\U0001f503 Refresh File List")
        file_multiselect = gr.Dropdown(choices=[], label="Select AWR Files", multiselect=True)
        refresh_button.click(fn=lambda: gr.update(choices=list_awr_files()), outputs=file_multiselect)

        llm_compare = gr.Dropdown(choices=list(supported_llms.keys()), value="gpt-4-turbo", label="LLM Model for Comparison")
        compare_output = gr.Textbox(label="Comparison Output", lines=20)
        gr.Button("Compare Selected AWRs").click(fn=compare_awrs, inputs=[file_multiselect, llm_compare], outputs=compare_output)

if __name__ == "__main__":
    demo.launch(debug=True)