File size: 7,930 Bytes
f0845ba
 
 
 
 
 
 
 
 
 
746d46c
 
f0845ba
 
746d46c
 
f0845ba
 
746d46c
 
 
 
 
 
 
f0845ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
746d46c
4723629
 
 
 
 
f0845ba
4723629
 
 
 
f0845ba
746d46c
4723629
746d46c
f0845ba
4723629
 
 
 
 
 
 
 
f0845ba
746d46c
4723629
 
 
 
 
746d46c
 
f0845ba
 
746d46c
f0845ba
746d46c
4723629
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f0845ba
4723629
f0845ba
4723629
f0845ba
4723629
f0845ba
4723629
 
f0845ba
 
 
 
4723629
 
 
 
 
 
 
f0845ba
 
 
 
 
746d46c
4723629
746d46c
 
f0845ba
4723629
f0845ba
4723629
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
# --- Imports ---
import os
import re
import gradio as gr
import openai
from datetime import datetime
from bs4 import BeautifulSoup

# --- API Keys ---
openai_api_key = os.environ.get("OPENAI_API_KEY")
openrouter_key = os.environ.get("OPENROUTER")

if not openai_api_key:
    raise ValueError("OPENAI_API_KEY environment variable is not set.")
if not openrouter_key:
    raise ValueError("OPENROUTER environment variable is not set.")

client = openai.OpenAI(api_key=openai_api_key)
openai_rater = openai.OpenAI(api_key=openrouter_key, base_url="https://openrouter.ai/api/v1")

# --- Logger ---
log_filename = "rating_log.txt"
if not os.path.exists(log_filename):
    with open(log_filename, "w", encoding="utf-8") as f:
        f.write("=== Rating Log Initialized ===\n")

# --- Exadata Specs ---
exadata_specs = {
    "X7": {"Quarter Rack": {"max_iops": 350000, "max_throughput": 25},
           "Half Rack": {"max_iops": 700000, "max_throughput": 50},
           "Full Rack": {"max_iops": 1400000, "max_throughput": 100}},
    "X8": {"Quarter Rack": {"max_iops": 380000, "max_throughput": 28},
           "Half Rack": {"max_iops": 760000, "max_throughput": 56},
           "Full Rack": {"max_iops": 1520000, "max_throughput": 112}},
    "X9": {"Quarter Rack": {"max_iops": 450000, "max_throughput": 30},
           "Half Rack": {"max_iops": 900000, "max_throughput": 60},
           "Full Rack": {"max_iops": 1800000, "max_throughput": 120}},
    "X10": {"Quarter Rack": {"max_iops": 500000, "max_throughput": 35},
            "Half Rack": {"max_iops": 1000000, "max_throughput": 70},
            "Full Rack": {"max_iops": 2000000, "max_throughput": 140}},
    "X11M": {"Quarter Rack": {"max_iops": 600000, "max_throughput": 40},
             "Half Rack": {"max_iops": 1200000, "max_throughput": 80},
             "Full Rack": {"max_iops": 2400000, "max_throughput": 160}},
}

# --- Preprocessor ---
def clean_awr_content(content):
    if "<html" in content.lower():
        soup = BeautifulSoup(content, "html.parser")
        text = soup.get_text()
    else:
        text = content
    cleaned = "\n".join([line.strip() for line in text.splitlines() if line.strip()])
    return cleaned

# --- AWR Analyzer ---
def analyze_awr(content, performance_test_mode, exadata_model, rack_size, selected_model_key):
    cleaned_content = clean_awr_content(content)
    max_chars = 128000
    if len(cleaned_content) > max_chars:
        cleaned_content = cleaned_content[:max_chars] + "\n\n[TRUNCATED]..."

    # Build prompt
    prompt = f"""
You are an expert Oracle Database performance analyst with deep knowledge of AWR reports, Oracle RAC internals, and Exadata architecture (Smart Scan, Flash Cache, IORM, RDMA, Storage Indexes). 
You must produce highly detailed diagnostic insights based on the AWR report provided below. Use numbers and thresholds whenever possible and explain why each observation matters. 

======== AWR REPORT START ========
{cleaned_content}
======== AWR REPORT END ========

Please provide the following sections:

- **Performance Summary**
- **Detailed Analysis of Bottlenecks and/or Degradation Risks**
- **Performance Forecast and Predictions**
- **Specific Recommendations for Monitoring**
- **Exadata Statistics Performance Summary**
- **Recommended Next Steps to Bridge Performance Gap**
"""

    # Add Exadata comparison if performance test mode
    if performance_test_mode and exadata_model and rack_size:
        specs = exadata_specs.get(exadata_model, {}).get(rack_size, {})
        if specs:
            prompt += f"""
This was a PERFORMANCE TEST on Oracle Exadata {exadata_model} {rack_size}.
Theoretical Max:
- Max IOPS: {specs['max_iops']}
- Max Throughput: {specs['max_throughput']} GB/s
Show actual vs theoretical and generate Recommended Next Steps to Bridge Performance Gap.
"""

    # Select model
    model_choices = {
        "GPT-4o (Balanced - Recommended for most tasks)": "gpt-4o",
        "Claude 3 Opus (Best for Deep Diagnostic Analysis)": "claude-3-opus-20240229",
        "GPT-4-turbo (Budget-Friendly, Good Quality)": "gpt-4-turbo",
        "Claude 3 Sonnet (Good Balance, Lower Cost)": "claude-3-sonnet-20240229"
    }

    MODEL = model_choices.get(selected_model_key, "gpt-4o")  # Fallback to gpt-4o if invalid

    response = client.chat.completions.create(
        model=MODEL,
        messages=[
            {"role": "system", "content": "You are an expert Oracle Database performance analyst."},
            {"role": "user", "content": prompt}
        ]
    )
    return response.choices[0].message.content.strip()

# --- Rater ---
def rate_answer_rater(question, final_answer):
    prompt = f"Rate this answer 1-5 stars with explanation:\n\n{final_answer}"
    response = openai_rater.chat.completions.create(
        model="mistral/ministral-8b",
        messages=[{"role": "user", "content": prompt}]
    )
    return response.choices[0].message.content.strip()

# --- Main Logic ---
def process_awr(awr_text, correctness_threshold, performance_test_mode, exadata_model, rack_size, selected_model_key):
    if not awr_text.strip():
        return "No AWR report provided.", "", ""

    answer = analyze_awr(awr_text, performance_test_mode, exadata_model, rack_size, selected_model_key)
    rating_text = rate_answer_rater("AWR Analysis", answer)

    stars = 0
    match = re.search(r"(\d+)", rating_text)
    if match:
        stars = int(match.group(1))

    if stars < correctness_threshold:
        answer_retry = analyze_awr(awr_text, performance_test_mode, exadata_model, rack_size, selected_model_key)
        rating_text_retry = rate_answer_rater("AWR Analysis (Retry)", answer_retry)

        with open(log_filename, "a", encoding="utf-8") as log_file:
            log_file.write(f"\n---\n{datetime.now()} RETRY\nOriginal: {answer}\nRating: {rating_text}\nRetry: {answer_retry}\nRetry Rating: {rating_text_retry}\n")

        return answer_retry, rating_text_retry, "βœ… Retry Occurred (rating below threshold)"
    else:
        with open(log_filename, "a", encoding="utf-8") as log_file:
            log_file.write(f"\n---\n{datetime.now()} SUCCESS\nAnswer: {answer}\nRating: {rating_text}\n")

        return answer, rating_text, "βœ… Accepted on first try"

# --- Gradio UI ---
with gr.Blocks() as demo:
    gr.Markdown("## πŸ“Š Oracle AWR Analyzer (AI + Rating + Retry + Exadata Gap Analysis + Model Selection)")

    awr_text = gr.Textbox(label="Paste AWR Report (HTML or TXT)", lines=30, placeholder="Paste full AWR here...")
    threshold = gr.Slider(0, 5, value=3, step=1, label="Correctness Threshold (Stars for Retry)")
    performance_test_mode = gr.Checkbox(label="Performance Test Mode")
    exadata_model = gr.Dropdown(choices=["X7", "X8", "X9", "X10", "X11M"], label="Exadata Model", visible=False)
    rack_size = gr.Dropdown(choices=["Quarter Rack", "Half Rack", "Full Rack"], label="Rack Size", visible=False)

    model_selector = gr.Dropdown(
        choices=["GPT-4o (Balanced - Recommended for most tasks)", "Claude 3 Opus (Best for Deep Diagnostic Analysis)",
                 "GPT-4-turbo (Budget-Friendly, Good Quality)", "Claude 3 Sonnet (Good Balance, Lower Cost)"],
        label="Choose AI Model for Analysis",
        value="GPT-4o (Balanced - Recommended for most tasks)"
    )

    def toggle_visibility(mode):
        return gr.update(visible=mode), gr.update(visible=mode)

    performance_test_mode.change(toggle_visibility, inputs=performance_test_mode, outputs=[exadata_model, rack_size])

    analyze_btn = gr.Button("Analyze AWR")
    output = gr.Textbox(label="AWR Analysis Result", lines=20)
    rating = gr.Textbox(label="Rater Rating + Explanation", lines=4)
    retry_status = gr.Textbox(label="Retry Status")

    analyze_btn.click(process_awr, inputs=[awr_text, threshold, performance_test_mode, exadata_model, rack_size, model_selector], outputs=[output, rating, retry_status])

demo.launch(debug=True)