Khaled Jamal
updated a comment
18e3952
# app.py
# Import the necessary classes and functions from smolagents
from smolagents import CodeAgent, HfApiModel, load_tool, tool
# Standard library imports
import yaml
# External imports
import torch
from transformers import pipeline
# Import custom final answer tool and Gradio UI
from tools.final_answer import FinalAnswerTool
from Gradio_UI import GradioUI
# Initialize the Transformer-based sentiment analysis pipeline
sentiment_pipeline = pipeline("sentiment-analysis")
@tool
def my_custom_tool(arg1: str, arg2: int) -> str:
"""A tool that does nothing yet
Args:
arg1: the first argument
arg2: the second argument
"""
return "What magic will you build?"
@tool
def advanced_sentiment_tool(text: str) -> str:
"""A tool that uses a pre-trained transformer model to do sentiment analysis.
Args:
text: The text to analyze for sentiment.
"""
analysis = sentiment_pipeline(text)
label = analysis[0]['label']
score = analysis[0]['score']
#sample values that could be assigned to the above two variables:
#label = "positive"
#score = "0.99"
return f"Sentiment: {label} (confidence: {score:.4f})"
@tool
def simple_sentiment_tool(text: str) -> str:
"""A tool that uses a pre-trained transformer model to do sentiment analysis.
Args:
text: The text to analyze for sentiment.
"""
text = text.lower()
if "happy" in text:
return "Sentiment: Joyful (confidence: 1.00)"
elif "sad" in text:
return "Sentiment: Sorrowful (confidence: 1.00)"
label = "positive"
score = "0.99"
return f"Sentiment: {label} (confidence: {score:.4f})"
# Final answer tool
final_answer = FinalAnswerTool()
# Initialize the model
model = HfApiModel(
max_tokens=2096,
temperature=0.5,
model_id='Qwen/Qwen2.5-Coder-32B-Instruct',
custom_role_conversions=None,
)
# Load prompt templates
with open("prompts.yaml", 'r') as stream:
prompt_templates = yaml.safe_load(stream)
# Initialize the agent, including the sentiment analysis tool
agent = CodeAgent(
model=model,
tools=[final_answer, advanced_sentiment_tool],
max_steps=6,
verbosity_level=1,
grammar=None,
planning_interval=None,
name=None,
description=None,
prompt_templates=prompt_templates
)
# Launch the Gradio UI
GradioUI(agent).launch()