Spaces:
Sleeping
Sleeping
File size: 10,067 Bytes
c034a74 ff704b5 4196bc7 c034a74 2bb03a8 4196bc7 1570ec4 4196bc7 2bb03a8 ff704b5 4196bc7 c034a74 2bb03a8 4196bc7 c034a74 60e1507 4196bc7 1570ec4 60e1507 3a240c4 ae31f7e 3a240c4 c034a74 4196bc7 2bb03a8 4196bc7 a318fb7 4196bc7 60e1507 4196bc7 60e1507 4196bc7 a318fb7 4196bc7 2bb03a8 908288f 4196bc7 2bb03a8 4196bc7 ff704b5 60e1507 2bb03a8 c034a74 2bb03a8 4196bc7 2bb03a8 4196bc7 2bb03a8 4196bc7 2bb03a8 4196bc7 2bb03a8 4196bc7 2bb03a8 4196bc7 2bb03a8 4196bc7 2bb03a8 60e1507 4196bc7 2bb03a8 60e1507 4196bc7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 |
# from fastapi import FastAPI, Response
# from fastapi.responses import FileResponse
# from kokoro import KPipeline
# import soundfile as sf
# import os
# import numpy as np
# import torch
# from huggingface_hub import InferenceClient
# def llm_chat_response(text):
# HF_TOKEN = os.getenv("HF_TOKEN")
# client = InferenceClient(api_key=HF_TOKEN)
# messages = [
# {
# "role": "user",
# "content": [
# {
# "type": "text",
# "text": text + str('describe in one line only')
# } #,
# # {
# # "type": "image_url",
# # "image_url": {
# # "url": "https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg"
# # }
# # }
# ]
# }
# ]
# response_from_llama = client.chat.completions.create(
# model="meta-llama/Llama-3.2-11B-Vision-Instruct",
# messages=messages,
# max_tokens=500)
# return response_from_llama.choices[0].message['content']
# app = FastAPI()
# # Initialize pipeline once at startup
# pipeline = KPipeline(lang_code='a')
# @app.post("/generate")
# async def generate_audio(text: str, voice: str = "af_heart", speed: float = 1.0):
# text_reply = llm_chat_response(text)
# # Generate audio
# generator = pipeline(
# text_reply,
# voice=voice,
# speed=speed,
# split_pattern=r'\n+'
# )
# # # Save first segment only for demo
# # for i, (gs, ps, audio) in enumerate(generator):
# # sf.write(f"output_{i}.wav", audio, 24000)
# # return FileResponse(
# # f"output_{i}.wav",
# # media_type="audio/wav",
# # filename="output.wav"
# # )
# # return Response("No audio generated", status_code=400)
# # Process only the first segment for demo
# for i, (gs, ps, audio) in enumerate(generator):
# # Convert PyTorch tensor to NumPy array
# audio_numpy = audio.cpu().numpy()
# # Convert to 16-bit PCM
# # Ensure the audio is in the range [-1, 1]
# audio_numpy = np.clip(audio_numpy, -1, 1)
# # Convert to 16-bit signed integers
# pcm_data = (audio_numpy * 32767).astype(np.int16)
# # Convert to bytes (automatically uses row-major order)
# raw_audio = pcm_data.tobytes()
# # Return PCM data with minimal necessary headers
# return Response(
# content=raw_audio,
# media_type="application/octet-stream",
# headers={
# "Content-Disposition": f'attachment; filename="output.pcm"',
# "X-Sample-Rate": "24000",
# "X-Bits-Per-Sample": "16",
# "X-Endianness": "little"
# }
# )
# return Response("No audio generated", status_code=400)
import os
import uuid
import base64
import logging
from fastapi import FastAPI, HTTPException, Response, Request
from fastapi.responses import JSONResponse
from fastapi.staticfiles import StaticFiles
from pydantic import BaseModel
from typing import Optional, ClassVar, List
from huggingface_hub import InferenceClient
import numpy as np
import torch
from kokoro import KPipeline # Assuming you have this pipeline for audio generation
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Create FastAPI app
app = FastAPI(
title="Text-to-Speech API with Vision Support",
description="This API uses meta-llama/Llama-3.2-11B-Vision-Instruct, which requires an image input.",
version="1.0.0"
)
# Mount a static directory for serving saved images
STATIC_DIR = "static_images"
if not os.path.exists(STATIC_DIR):
os.makedirs(STATIC_DIR)
app.mount("/static", StaticFiles(directory=STATIC_DIR), name="static")
# Pydantic model for request
class TextImageRequest(BaseModel):
text: Optional[str] = None
image_base64: Optional[str] = None
voice: str = "af_heart" # Default voice
speed: float = 1.0
# Use ClassVar so that Pydantic doesn't treat this as a model field.
AVAILABLE_VOICES: ClassVar[List[str]] = ["af_heart"]
def validate_voice(self):
if self.voice not in self.AVAILABLE_VOICES:
return "af_heart"
return self.voice
# (Optional) Pydantic models for responses
class AudioResponse(BaseModel):
status: str
message: str
class ErrorResponse(BaseModel):
error: str
detail: Optional[str] = None
# Function to call the LLM model following the reference code exactly
def llm_chat_response(text: str, image_base64: str) -> str:
HF_TOKEN = os.getenv("HF_TOKEN")
logger.info("Checking HF_TOKEN...")
if not HF_TOKEN:
logger.error("HF_TOKEN not configured")
raise HTTPException(status_code=500, detail="HF_TOKEN not configured")
logger.info("Initializing InferenceClient...")
client = InferenceClient(
provider="hf-inference",
api_key=HF_TOKEN
)
# Save the base64-encoded image locally so it is accessible via a URL
filename = f"{uuid.uuid4()}.jpg"
image_path = os.path.join(STATIC_DIR, filename)
try:
image_data = base64.b64decode(image_base64)
except Exception as e:
logger.error(f"Error decoding image: {str(e)}")
raise HTTPException(status_code=400, detail="Invalid base64 image data")
with open(image_path, "wb") as f:
f.write(image_data)
# Construct the public URL for the saved image.
# BASE_URL should be set to your public URL if not running locally.
base_url = os.getenv("BASE_URL", "http://localhost:8000")
image_url = f"{base_url}/static/{filename}"
# Build the message exactly as in the reference code.
# This model requires a list with two items: one for text and one for the image.
prompt = text if text else "Describe this image in one sentence."
messages = [
{
"role": "user",
"content": [
{"type": "text", "text": prompt},
{"type": "image_url", "image_url": {"url": image_url}}
]
}
]
logger.info(f"Message structure: {messages}")
try:
completion = client.chat.completions.create(
model="meta-llama/Llama-3.2-11B-Vision-Instruct",
messages=messages,
max_tokens=500
)
response = completion.choices[0].message.content
logger.info(f"Extracted response: {response}")
return response
except Exception as e:
logger.error(f"Error during model inference: {str(e)}")
raise HTTPException(status_code=500, detail=str(e))
# Initialize audio generation pipeline (your audio conversion pipeline)
try:
logger.info("Initializing KPipeline...")
pipeline = KPipeline(lang_code='a')
logger.info("KPipeline initialized successfully")
except Exception as e:
logger.error(f"Failed to initialize KPipeline: {str(e)}")
# The API can still run, but audio generation will fail.
@app.post("/generate", responses={
200: {"content": {"application/octet-stream": {}}},
400: {"model": ErrorResponse},
500: {"model": ErrorResponse}
})
async def generate_audio(request: TextImageRequest):
"""
Generate audio from a multimodal (text+image) input.
This model does not support text-only inputs.
"""
logger.info("Received generation request")
# Ensure an image is provided because the model is multimodal.
if not request.image_base64:
raise HTTPException(status_code=400, detail="This model requires an image input.")
# Get the text prompt. If none is provided, use a default.
user_text = request.text if request.text else "Describe this image in one sentence."
# Get the LLM's response
logger.info("Calling the LLM model")
text_reply = llm_chat_response(user_text, request.image_base64)
logger.info(f"LLM response: {text_reply}")
# Validate voice parameter (if needed for audio generation)
validated_voice = request.validate_voice()
if validated_voice != request.voice:
logger.warning(f"Voice '{request.voice}' not available; using '{validated_voice}' instead")
# Convert the text reply to audio using your audio pipeline
logger.info(f"Generating audio using voice={validated_voice}, speed={request.speed}")
try:
# Generate audio segments (assumes pipeline yields segments)
generator = pipeline(
text_reply,
voice=validated_voice,
speed=request.speed,
split_pattern=r'\n+'
)
for i, (gs, ps, audio) in enumerate(generator):
logger.info(f"Audio generated, segment {i}")
# Convert audio tensor to 16-bit PCM bytes
audio_numpy = audio.cpu().numpy()
audio_numpy = np.clip(audio_numpy, -1, 1)
pcm_data = (audio_numpy * 32767).astype(np.int16)
raw_audio = pcm_data.tobytes()
return Response(
content=raw_audio,
media_type="application/octet-stream",
headers={
"Content-Disposition": 'attachment; filename="output.pcm"',
"X-Sample-Rate": "24000",
"X-Bits-Per-Sample": "16",
"X-Endianness": "little"
}
)
raise HTTPException(status_code=400, detail="No audio segments generated.")
except Exception as e:
logger.error(f"Error generating audio: {str(e)}")
raise HTTPException(status_code=500, detail=str(e))
@app.get("/")
async def root():
return {"message": "Welcome! Use POST /generate with text and image_base64."}
@app.exception_handler(404)
async def not_found_handler(request: Request, exc):
return JSONResponse(status_code=404, content={"error": "Endpoint not found."})
@app.exception_handler(405)
async def method_not_allowed_handler(request: Request, exc):
return JSONResponse(status_code=405, content={"error": "Method not allowed."})
|