Spaces:
Sleeping
Sleeping
# from fastapi import FastAPI, Response | |
# from fastapi.responses import FileResponse | |
# from kokoro import KPipeline | |
# import soundfile as sf | |
# import os | |
# import numpy as np | |
# import torch | |
# from huggingface_hub import InferenceClient | |
# def llm_chat_response(text): | |
# HF_TOKEN = os.getenv("HF_TOKEN") | |
# client = InferenceClient(api_key=HF_TOKEN) | |
# messages = [ | |
# { | |
# "role": "user", | |
# "content": [ | |
# { | |
# "type": "text", | |
# "text": text + str('describe in one line only') | |
# } #, | |
# # { | |
# # "type": "image_url", | |
# # "image_url": { | |
# # "url": "https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg" | |
# # } | |
# # } | |
# ] | |
# } | |
# ] | |
# response_from_llama = client.chat.completions.create( | |
# model="meta-llama/Llama-3.2-11B-Vision-Instruct", | |
# messages=messages, | |
# max_tokens=500) | |
# return response_from_llama.choices[0].message['content'] | |
# app = FastAPI() | |
# # Initialize pipeline once at startup | |
# pipeline = KPipeline(lang_code='a') | |
# @app.post("/generate") | |
# async def generate_audio(text: str, voice: str = "af_heart", speed: float = 1.0): | |
# text_reply = llm_chat_response(text) | |
# # Generate audio | |
# generator = pipeline( | |
# text_reply, | |
# voice=voice, | |
# speed=speed, | |
# split_pattern=r'\n+' | |
# ) | |
# # # Save first segment only for demo | |
# # for i, (gs, ps, audio) in enumerate(generator): | |
# # sf.write(f"output_{i}.wav", audio, 24000) | |
# # return FileResponse( | |
# # f"output_{i}.wav", | |
# # media_type="audio/wav", | |
# # filename="output.wav" | |
# # ) | |
# # return Response("No audio generated", status_code=400) | |
# # Process only the first segment for demo | |
# for i, (gs, ps, audio) in enumerate(generator): | |
# # Convert PyTorch tensor to NumPy array | |
# audio_numpy = audio.cpu().numpy() | |
# # Convert to 16-bit PCM | |
# # Ensure the audio is in the range [-1, 1] | |
# audio_numpy = np.clip(audio_numpy, -1, 1) | |
# # Convert to 16-bit signed integers | |
# pcm_data = (audio_numpy * 32767).astype(np.int16) | |
# # Convert to bytes (automatically uses row-major order) | |
# raw_audio = pcm_data.tobytes() | |
# # Return PCM data with minimal necessary headers | |
# return Response( | |
# content=raw_audio, | |
# media_type="application/octet-stream", | |
# headers={ | |
# "Content-Disposition": f'attachment; filename="output.pcm"', | |
# "X-Sample-Rate": "24000", | |
# "X-Bits-Per-Sample": "16", | |
# "X-Endianness": "little" | |
# } | |
# ) | |
# return Response("No audio generated", status_code=400) | |
import os | |
import uuid | |
import base64 | |
import logging | |
from fastapi import FastAPI, HTTPException, Response, Request | |
from fastapi.responses import JSONResponse | |
from fastapi.staticfiles import StaticFiles | |
from pydantic import BaseModel | |
from typing import Optional, ClassVar, List | |
from huggingface_hub import InferenceClient | |
import numpy as np | |
import torch | |
from kokoro import KPipeline # Assuming you have this pipeline for audio generation | |
# Set up logging | |
logging.basicConfig(level=logging.INFO) | |
logger = logging.getLogger(__name__) | |
# Create FastAPI app | |
app = FastAPI( | |
title="Text-to-Speech API with Vision Support", | |
description="This API uses meta-llama/Llama-3.2-11B-Vision-Instruct, which requires an image input.", | |
version="1.0.0" | |
) | |
# Mount a static directory for serving saved images | |
STATIC_DIR = "static_images" | |
if not os.path.exists(STATIC_DIR): | |
os.makedirs(STATIC_DIR) | |
app.mount("/static", StaticFiles(directory=STATIC_DIR), name="static") | |
# Pydantic model for request | |
class TextImageRequest(BaseModel): | |
text: Optional[str] = None | |
image_base64: Optional[str] = None | |
voice: str = "af_heart" # Default voice | |
speed: float = 1.0 | |
# Use ClassVar so that Pydantic doesn't treat this as a model field. | |
AVAILABLE_VOICES: ClassVar[List[str]] = ["af_heart"] | |
def validate_voice(self): | |
if self.voice not in self.AVAILABLE_VOICES: | |
return "af_heart" | |
return self.voice | |
# (Optional) Pydantic models for responses | |
class AudioResponse(BaseModel): | |
status: str | |
message: str | |
class ErrorResponse(BaseModel): | |
error: str | |
detail: Optional[str] = None | |
# Function to call the LLM model following the reference code exactly | |
def llm_chat_response(text: str, image_base64: str) -> str: | |
HF_TOKEN = os.getenv("HF_TOKEN") | |
logger.info("Checking HF_TOKEN...") | |
if not HF_TOKEN: | |
logger.error("HF_TOKEN not configured") | |
raise HTTPException(status_code=500, detail="HF_TOKEN not configured") | |
logger.info("Initializing InferenceClient...") | |
client = InferenceClient( | |
provider="hf-inference", | |
api_key=HF_TOKEN | |
) | |
# Save the base64-encoded image locally so it is accessible via a URL | |
filename = f"{uuid.uuid4()}.jpg" | |
image_path = os.path.join(STATIC_DIR, filename) | |
try: | |
image_data = base64.b64decode(image_base64) | |
except Exception as e: | |
logger.error(f"Error decoding image: {str(e)}") | |
raise HTTPException(status_code=400, detail="Invalid base64 image data") | |
with open(image_path, "wb") as f: | |
f.write(image_data) | |
# Construct the public URL for the saved image. | |
# BASE_URL should be set to your public URL if not running locally. | |
base_url = os.getenv("BASE_URL", "http://localhost:8000") | |
image_url = f"{base_url}/static/{filename}" | |
# Build the message exactly as in the reference code. | |
# This model requires a list with two items: one for text and one for the image. | |
prompt = text if text else "Describe this image in one sentence." | |
messages = [ | |
{ | |
"role": "user", | |
"content": [ | |
{"type": "text", "text": prompt}, | |
{"type": "image_url", "image_url": {"url": image_url}} | |
] | |
} | |
] | |
logger.info(f"Message structure: {messages}") | |
try: | |
completion = client.chat.completions.create( | |
model="meta-llama/Llama-3.2-11B-Vision-Instruct", | |
messages=messages, | |
max_tokens=500 | |
) | |
response = completion.choices[0].message.content | |
logger.info(f"Extracted response: {response}") | |
return response | |
except Exception as e: | |
logger.error(f"Error during model inference: {str(e)}") | |
raise HTTPException(status_code=500, detail=str(e)) | |
# Initialize audio generation pipeline (your audio conversion pipeline) | |
try: | |
logger.info("Initializing KPipeline...") | |
pipeline = KPipeline(lang_code='a') | |
logger.info("KPipeline initialized successfully") | |
except Exception as e: | |
logger.error(f"Failed to initialize KPipeline: {str(e)}") | |
# The API can still run, but audio generation will fail. | |
async def generate_audio(request: TextImageRequest): | |
""" | |
Generate audio from a multimodal (text+image) input. | |
This model does not support text-only inputs. | |
""" | |
logger.info("Received generation request") | |
# Ensure an image is provided because the model is multimodal. | |
if not request.image_base64: | |
raise HTTPException(status_code=400, detail="This model requires an image input.") | |
# Get the text prompt. If none is provided, use a default. | |
user_text = request.text if request.text else "Describe this image in one sentence." | |
# Get the LLM's response | |
logger.info("Calling the LLM model") | |
text_reply = llm_chat_response(user_text, request.image_base64) | |
logger.info(f"LLM response: {text_reply}") | |
# Validate voice parameter (if needed for audio generation) | |
validated_voice = request.validate_voice() | |
if validated_voice != request.voice: | |
logger.warning(f"Voice '{request.voice}' not available; using '{validated_voice}' instead") | |
# Convert the text reply to audio using your audio pipeline | |
logger.info(f"Generating audio using voice={validated_voice}, speed={request.speed}") | |
try: | |
# Generate audio segments (assumes pipeline yields segments) | |
generator = pipeline( | |
text_reply, | |
voice=validated_voice, | |
speed=request.speed, | |
split_pattern=r'\n+' | |
) | |
for i, (gs, ps, audio) in enumerate(generator): | |
logger.info(f"Audio generated, segment {i}") | |
# Convert audio tensor to 16-bit PCM bytes | |
audio_numpy = audio.cpu().numpy() | |
audio_numpy = np.clip(audio_numpy, -1, 1) | |
pcm_data = (audio_numpy * 32767).astype(np.int16) | |
raw_audio = pcm_data.tobytes() | |
return Response( | |
content=raw_audio, | |
media_type="application/octet-stream", | |
headers={ | |
"Content-Disposition": 'attachment; filename="output.pcm"', | |
"X-Sample-Rate": "24000", | |
"X-Bits-Per-Sample": "16", | |
"X-Endianness": "little" | |
} | |
) | |
raise HTTPException(status_code=400, detail="No audio segments generated.") | |
except Exception as e: | |
logger.error(f"Error generating audio: {str(e)}") | |
raise HTTPException(status_code=500, detail=str(e)) | |
async def root(): | |
return {"message": "Welcome! Use POST /generate with text and image_base64."} | |
async def not_found_handler(request: Request, exc): | |
return JSONResponse(status_code=404, content={"error": "Endpoint not found."}) | |
async def method_not_allowed_handler(request: Request, exc): | |
return JSONResponse(status_code=405, content={"error": "Method not allowed."}) | |