khurrameycon's picture
Update app.py
64f53a8 verified
raw
history blame
12.3 kB
# from fastapi import FastAPI, Response
# from fastapi.responses import FileResponse
# from kokoro import KPipeline
# import soundfile as sf
# import os
# import numpy as np
# import torch
# from huggingface_hub import InferenceClient
# def llm_chat_response(text):
# HF_TOKEN = os.getenv("HF_TOKEN")
# client = InferenceClient(api_key=HF_TOKEN)
# messages = [
# {
# "role": "user",
# "content": [
# {
# "type": "text",
# "text": text + str('describe in one line only')
# } #,
# # {
# # "type": "image_url",
# # "image_url": {
# # "url": "https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg"
# # }
# # }
# ]
# }
# ]
# response_from_llama = client.chat.completions.create(
# model="meta-llama/Llama-3.2-11B-Vision-Instruct",
# messages=messages,
# max_tokens=500)
# return response_from_llama.choices[0].message['content']
# app = FastAPI()
# # Initialize pipeline once at startup
# pipeline = KPipeline(lang_code='a')
# @app.post("/generate")
# async def generate_audio(text: str, voice: str = "af_heart", speed: float = 1.0):
# text_reply = llm_chat_response(text)
# # Generate audio
# generator = pipeline(
# text_reply,
# voice=voice,
# speed=speed,
# split_pattern=r'\n+'
# )
# # # Save first segment only for demo
# # for i, (gs, ps, audio) in enumerate(generator):
# # sf.write(f"output_{i}.wav", audio, 24000)
# # return FileResponse(
# # f"output_{i}.wav",
# # media_type="audio/wav",
# # filename="output.wav"
# # )
# # return Response("No audio generated", status_code=400)
# # Process only the first segment for demo
# for i, (gs, ps, audio) in enumerate(generator):
# # Convert PyTorch tensor to NumPy array
# audio_numpy = audio.cpu().numpy()
# # Convert to 16-bit PCM
# # Ensure the audio is in the range [-1, 1]
# audio_numpy = np.clip(audio_numpy, -1, 1)
# # Convert to 16-bit signed integers
# pcm_data = (audio_numpy * 32767).astype(np.int16)
# # Convert to bytes (automatically uses row-major order)
# raw_audio = pcm_data.tobytes()
# # Return PCM data with minimal necessary headers
# return Response(
# content=raw_audio,
# media_type="application/octet-stream",
# headers={
# "Content-Disposition": f'attachment; filename="output.pcm"',
# "X-Sample-Rate": "24000",
# "X-Bits-Per-Sample": "16",
# "X-Endianness": "little"
# }
# )
# return Response("No audio generated", status_code=400)
from fastapi import FastAPI, Response, HTTPException, Request
from fastapi.responses import JSONResponse
from fastapi.staticfiles import StaticFiles
from kokoro import KPipeline
import os
import numpy as np
import torch
from huggingface_hub import InferenceClient
from pydantic import BaseModel
import base64
import logging
from typing import Optional, ClassVar, List
import uuid
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
class TextImageRequest(BaseModel):
text: Optional[str] = None
image_base64: Optional[str] = None
voice: str = "af_heart" # Default voice that we know exists
speed: float = 1.0
# Annotate as a ClassVar so Pydantic ignores it as a field.
AVAILABLE_VOICES: ClassVar[List[str]] = ["af_heart"]
def validate_voice(self):
if self.voice not in self.AVAILABLE_VOICES:
return "af_heart"
return self.voice
class AudioResponse(BaseModel):
status: str
message: str
class ErrorResponse(BaseModel):
error: str
detail: Optional[str] = None
# Initialize FastAPI app
app = FastAPI(
title="Text-to-Speech API with Vision Support",
description="API for generating speech from text with optional image analysis",
version="1.0.0"
)
# Create and mount static images directory so images are accessible via URL
STATIC_DIR = "static_images"
if not os.path.exists(STATIC_DIR):
os.makedirs(STATIC_DIR)
app.mount("/static", StaticFiles(directory=STATIC_DIR), name="static")
def llm_chat_response(text, image_base64=None):
"""Get responses from LLM with text and optionally an image input."""
try:
HF_TOKEN = os.getenv("HF_TOKEN")
logger.info("Checking HF_TOKEN...")
if not HF_TOKEN:
logger.error("HF_TOKEN not found in environment variables")
raise HTTPException(status_code=500, detail="HF_TOKEN not configured")
logger.info("Initializing InferenceClient...")
client = InferenceClient(
provider="hf-inference", # Using the correct provider as per sample
api_key=HF_TOKEN
)
if image_base64:
logger.info("Processing request with image")
# Save the base64 image to the static folder
filename = f"{uuid.uuid4()}.jpg"
image_path = os.path.join(STATIC_DIR, filename)
try:
image_data = base64.b64decode(image_base64)
except Exception as e:
logger.error(f"Error decoding base64 image: {str(e)}")
raise HTTPException(status_code=400, detail="Invalid base64 image data")
with open(image_path, "wb") as f:
f.write(image_data)
# Construct image URL (assumes BASE_URL environment variable or defaults to localhost)
base_url = os.getenv("BASE_URL", "http://localhost:8000")
image_url = f"{base_url}/static/{filename}"
prompt = text if text else "Describe this image in one sentence."
# Construct message exactly as in the reference
messages = [
{
"role": "user",
"content": [
{"type": "text", "text": prompt},
{"type": "image_url", "image_url": {"url": image_url}}
]
}
]
else:
logger.info("Processing text-only request")
messages = [
{
"role": "user",
"content": text + " Describe in one line only."
}
]
logger.info("Sending request to model...")
logger.info(f"Message structure: {messages}")
completion = client.chat.completions.create(
model="meta-llama/Llama-3.2-11B-Vision-Instruct",
messages=messages,
max_tokens=500
)
logger.info("Received response from model")
logger.info(f"Model response received: {completion}")
try:
response = completion.choices[0].message.content
logger.info(f"Extracted response content: {response}")
return response
except Exception as e:
logger.error(f"Error extracting message content: {str(e)}")
try:
if hasattr(completion.choices[0], "message") and hasattr(completion.choices[0].message, "content"):
return completion.choices[0].message.content
return completion.choices[0]["message"]["content"]
except Exception as e2:
logger.error(f"All extraction methods failed: {str(e2)}")
return "I couldn't process that input. Please try again with a different query."
except Exception as e:
logger.error(f"Error in llm_chat_response: {str(e)}")
raise HTTPException(status_code=500, detail=str(e))
# Initialize the audio generation pipeline once at startup
try:
logger.info("Initializing KPipeline...")
pipeline = KPipeline(lang_code='a')
logger.info("KPipeline initialized successfully")
except Exception as e:
logger.error(f"Failed to initialize KPipeline: {str(e)}")
# The app starts regardless but logs the error
@app.post("/generate", responses={
200: {"content": {"application/octet-stream": {}}},
400: {"model": ErrorResponse},
500: {"model": ErrorResponse}
})
async def generate_audio(request: TextImageRequest):
"""
Generate audio from text and optionally analyze an image.
- If text is provided, it is used as input.
- If an image is provided (base64), it is saved and a URL is generated for processing.
- The LLM response is then converted to speech.
"""
try:
logger.info("Received audio generation request")
user_text = request.text if request.text is not None else ""
if not user_text and request.image_base64:
user_text = "Describe what you see in the image"
elif not user_text and not request.image_base64:
logger.error("Neither text nor image provided in request")
return JSONResponse(
status_code=400,
content={"error": "Request must include either text or image_base64"}
)
logger.info("Getting LLM response...")
text_reply = llm_chat_response(user_text, request.image_base64)
logger.info(f"LLM response: {text_reply}")
validated_voice = request.validate_voice()
if validated_voice != request.voice:
logger.warning(f"Requested voice '{request.voice}' not available, using '{validated_voice}' instead")
logger.info(f"Generating audio using voice={validated_voice}, speed={request.speed}")
try:
generator = pipeline(
text_reply,
voice=validated_voice,
speed=request.speed,
split_pattern=r'\n+'
)
for i, (gs, ps, audio) in enumerate(generator):
logger.info(f"Audio generated successfully: segment {i}")
# Convert PyTorch tensor to NumPy array
audio_numpy = audio.cpu().numpy()
# Clip values to range [-1, 1] and convert to 16-bit PCM
audio_numpy = np.clip(audio_numpy, -1, 1)
pcm_data = (audio_numpy * 32767).astype(np.int16)
raw_audio = pcm_data.tobytes()
return Response(
content=raw_audio,
media_type="application/octet-stream",
headers={
"Content-Disposition": 'attachment; filename="output.pcm"',
"X-Sample-Rate": "24000",
"X-Bits-Per-Sample": "16",
"X-Endianness": "little"
}
)
logger.error("No audio segments generated")
return JSONResponse(
status_code=400,
content={"error": "No audio generated", "detail": "The pipeline did not produce any audio"}
)
except Exception as e:
logger.error(f"Error generating audio: {str(e)}")
return JSONResponse(
status_code=500,
content={"error": "Audio generation failed", "detail": str(e)}
)
except Exception as e:
logger.error(f"Unexpected error in generate_audio endpoint: {str(e)}")
return JSONResponse(
status_code=500,
content={"error": "Internal server error", "detail": str(e)}
)
@app.get("/")
async def root():
return {"message": "Welcome to the Text-to-Speech API with Vision Support. Use POST /generate with 'text' and optionally 'image_base64' for queries."}
@app.exception_handler(404)
async def not_found_handler(request: Request, exc):
return JSONResponse(
status_code=404,
content={"error": "Endpoint not found. Please use POST /generate for queries."}
)
@app.exception_handler(405)
async def method_not_allowed_handler(request: Request, exc):
return JSONResponse(
status_code=405,
content={"error": "Method not allowed. Please check the API documentation."}
)