File size: 12,282 Bytes
c034a74
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60e1507
 
 
ff704b5
 
d0ae17f
c034a74
6f1334b
c034a74
 
2bb03a8
1570ec4
44d8d66
2bb03a8
 
 
 
ff704b5
c034a74
2bb03a8
 
44d8d66
c034a74
60e1507
ae31f7e
1570ec4
60e1507
3a240c4
 
ae31f7e
3a240c4
c034a74
2bb03a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60e1507
 
 
 
 
 
c034a74
60e1507
a318fb7
2bb03a8
 
 
 
 
a1a0caf
2bb03a8
 
ae31f7e
2bb03a8
a318fb7
a1a0caf
60e1507
 
 
 
 
a87cf29
60e1507
a87cf29
60e1507
 
 
 
 
 
 
 
ae31f7e
60e1507
 
 
 
44d8d66
 
60e1507
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2bb03a8
60e1507
 
 
 
 
 
 
 
2bb03a8
a318fb7
2bb03a8
 
908288f
60e1507
2bb03a8
 
 
 
 
 
60e1507
ff704b5
60e1507
2bb03a8
 
 
 
c034a74
2bb03a8
 
e3f5ff0
60e1507
 
 
2bb03a8
 
60e1507
2bb03a8
 
 
 
 
 
 
 
 
fce7c66
2bb03a8
 
 
fce7c66
3a240c4
 
 
 
 
2bb03a8
 
 
3a240c4
2bb03a8
 
 
 
 
 
 
 
60e1507
2bb03a8
 
 
 
 
 
 
 
60e1507
2bb03a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d0ae17f
2bb03a8
 
 
 
 
 
 
 
 
60e1507
2bb03a8
 
60e1507
2bb03a8
 
 
 
 
 
60e1507
2bb03a8
 
 
60e1507
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
# from fastapi import FastAPI, Response
# from fastapi.responses import FileResponse
# from kokoro import KPipeline
# import soundfile as sf
# import os
# import numpy as np
# import torch 
# from huggingface_hub import InferenceClient

# def llm_chat_response(text):
#     HF_TOKEN = os.getenv("HF_TOKEN")
#     client = InferenceClient(api_key=HF_TOKEN)
#     messages = [
# 	{
# 		"role": "user",
# 		"content": [
# 			{
# 				"type": "text",
# 				"text": text + str('describe in one line only')
# 			} #,
# 			# {
# 			# 	"type": "image_url",
# 			# 	"image_url": {
# 			# 		"url": "https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg"
# 			# 	}
# 			# }
#             ]
# 	}
#     ]

#     response_from_llama = client.chat.completions.create(
#     model="meta-llama/Llama-3.2-11B-Vision-Instruct", 
# 	messages=messages, 
# 	max_tokens=500)

#     return response_from_llama.choices[0].message['content']

# app = FastAPI()

# # Initialize pipeline once at startup
# pipeline = KPipeline(lang_code='a')

# @app.post("/generate")
# async def generate_audio(text: str, voice: str = "af_heart", speed: float = 1.0):
    
#     text_reply = llm_chat_response(text)
    
#     # Generate audio
#     generator = pipeline(
#         text_reply, 
#         voice=voice,
#         speed=speed,
#         split_pattern=r'\n+'
#     )
    
#     # # Save first segment only for demo
#     # for i, (gs, ps, audio) in enumerate(generator):
#     #     sf.write(f"output_{i}.wav", audio, 24000)
#     #     return FileResponse(
#     #         f"output_{i}.wav",
#     #         media_type="audio/wav",
#     #         filename="output.wav"
#     #     )
    
#     # return Response("No audio generated", status_code=400)


#     # Process only the first segment for demo
#     for i, (gs, ps, audio) in enumerate(generator):

#         # Convert PyTorch tensor to NumPy array
#         audio_numpy = audio.cpu().numpy()
#         # Convert to 16-bit PCM
        
#         # Ensure the audio is in the range [-1, 1]
#         audio_numpy = np.clip(audio_numpy, -1, 1)
#         # Convert to 16-bit signed integers
#         pcm_data = (audio_numpy * 32767).astype(np.int16)
        
#         # Convert to bytes (automatically uses row-major order)
#         raw_audio = pcm_data.tobytes()
        
#         # Return PCM data with minimal necessary headers
#         return Response(
#             content=raw_audio,
#             media_type="application/octet-stream",
#             headers={
#                 "Content-Disposition": f'attachment; filename="output.pcm"',
#                 "X-Sample-Rate": "24000",
#                 "X-Bits-Per-Sample": "16",
#                 "X-Endianness": "little"
#             }
#         )
    
#     return Response("No audio generated", status_code=400)

from fastapi import FastAPI, Response, HTTPException, Request
from fastapi.responses import JSONResponse
from fastapi.staticfiles import StaticFiles
from kokoro import KPipeline
import os
import numpy as np
import torch
from huggingface_hub import InferenceClient
from pydantic import BaseModel
import base64
import logging
from typing import Optional, ClassVar, List
import uuid

# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

class TextImageRequest(BaseModel):
    text: Optional[str] = None
    image_base64: Optional[str] = None
    voice: str = "af_heart"  # Default voice that we know exists
    speed: float = 1.0

    # Annotate as a ClassVar so Pydantic ignores it as a field.
    AVAILABLE_VOICES: ClassVar[List[str]] = ["af_heart"]

    def validate_voice(self):
        if self.voice not in self.AVAILABLE_VOICES:
            return "af_heart"
        return self.voice

class AudioResponse(BaseModel):
    status: str
    message: str

class ErrorResponse(BaseModel):
    error: str
    detail: Optional[str] = None

# Initialize FastAPI app
app = FastAPI(
    title="Text-to-Speech API with Vision Support",
    description="API for generating speech from text with optional image analysis",
    version="1.0.0"
)

# Create and mount static images directory so images are accessible via URL
STATIC_DIR = "static_images"
if not os.path.exists(STATIC_DIR):
    os.makedirs(STATIC_DIR)
app.mount("/static", StaticFiles(directory=STATIC_DIR), name="static")

def llm_chat_response(text, image_base64=None):
    """Get responses from LLM with text and optionally an image input."""
    try:
        HF_TOKEN = os.getenv("HF_TOKEN")
        logger.info("Checking HF_TOKEN...")
        if not HF_TOKEN:
            logger.error("HF_TOKEN not found in environment variables")
            raise HTTPException(status_code=500, detail="HF_TOKEN not configured")
        
        logger.info("Initializing InferenceClient...")
        client = InferenceClient(
            provider="hf-inference",  # Using the correct provider as per sample
            api_key=HF_TOKEN
        )
        
        if image_base64:
            logger.info("Processing request with image")
            # Save the base64 image to the static folder
            filename = f"{uuid.uuid4()}.jpg"
            image_path = os.path.join(STATIC_DIR, filename)
            try:
                image_data = base64.b64decode(image_base64)
            except Exception as e:
                logger.error(f"Error decoding base64 image: {str(e)}")
                raise HTTPException(status_code=400, detail="Invalid base64 image data")
            with open(image_path, "wb") as f:
                f.write(image_data)
            # Construct image URL (assumes BASE_URL environment variable or defaults to localhost)
            base_url = os.getenv("BASE_URL", "http://localhost:8000")
            image_url = f"{base_url}/static/{filename}"
            prompt = text if text else "Describe this image in one sentence."
            # Construct message exactly as in the reference
            messages = [
                {
                    "role": "user",
                    "content": [
                        {"type": "text", "text": prompt},
                        {"type": "image_url", "image_url": {"url": image_url}}
                    ]
                }
            ]
        else:
            logger.info("Processing text-only request")
            messages = [
                {
                    "role": "user",
                    "content": text + " Describe in one line only."
                }
            ]
        
        logger.info("Sending request to model...")
        logger.info(f"Message structure: {messages}")
        
        completion = client.chat.completions.create(
            model="meta-llama/Llama-3.2-11B-Vision-Instruct",
            messages=messages,
            max_tokens=500
        )
        
        logger.info("Received response from model")
        logger.info(f"Model response received: {completion}")
        
        try:
            response = completion.choices[0].message.content
            logger.info(f"Extracted response content: {response}")
            return response
        except Exception as e:
            logger.error(f"Error extracting message content: {str(e)}")
            try:
                if hasattr(completion.choices[0], "message") and hasattr(completion.choices[0].message, "content"):
                    return completion.choices[0].message.content
                return completion.choices[0]["message"]["content"]
            except Exception as e2:
                logger.error(f"All extraction methods failed: {str(e2)}")
                return "I couldn't process that input. Please try again with a different query."
            
    except Exception as e:
        logger.error(f"Error in llm_chat_response: {str(e)}")
        raise HTTPException(status_code=500, detail=str(e))

# Initialize the audio generation pipeline once at startup
try:
    logger.info("Initializing KPipeline...")
    pipeline = KPipeline(lang_code='a')
    logger.info("KPipeline initialized successfully")
except Exception as e:
    logger.error(f"Failed to initialize KPipeline: {str(e)}")
    # The app starts regardless but logs the error

@app.post("/generate", responses={
    200: {"content": {"application/octet-stream": {}}},
    400: {"model": ErrorResponse},
    500: {"model": ErrorResponse}
})
async def generate_audio(request: TextImageRequest):
    """
    Generate audio from text and optionally analyze an image.
    
    - If text is provided, it is used as input.
    - If an image is provided (base64), it is saved and a URL is generated for processing.
    - The LLM response is then converted to speech.
    """
    try:
        logger.info("Received audio generation request")
        user_text = request.text if request.text is not None else ""
        if not user_text and request.image_base64:
            user_text = "Describe what you see in the image"
        elif not user_text and not request.image_base64:
            logger.error("Neither text nor image provided in request")
            return JSONResponse(
                status_code=400, 
                content={"error": "Request must include either text or image_base64"}
            )
        
        logger.info("Getting LLM response...")
        text_reply = llm_chat_response(user_text, request.image_base64)
        logger.info(f"LLM response: {text_reply}")
        
        validated_voice = request.validate_voice()
        if validated_voice != request.voice:
            logger.warning(f"Requested voice '{request.voice}' not available, using '{validated_voice}' instead")
        
        logger.info(f"Generating audio using voice={validated_voice}, speed={request.speed}")
        try:
            generator = pipeline(
                text_reply,
                voice=validated_voice,
                speed=request.speed,
                split_pattern=r'\n+'
            )
            
            for i, (gs, ps, audio) in enumerate(generator):
                logger.info(f"Audio generated successfully: segment {i}")
                # Convert PyTorch tensor to NumPy array
                audio_numpy = audio.cpu().numpy()
                # Clip values to range [-1, 1] and convert to 16-bit PCM
                audio_numpy = np.clip(audio_numpy, -1, 1)
                pcm_data = (audio_numpy * 32767).astype(np.int16)
                raw_audio = pcm_data.tobytes()
                
                return Response(
                    content=raw_audio,
                    media_type="application/octet-stream",
                    headers={
                        "Content-Disposition": 'attachment; filename="output.pcm"',
                        "X-Sample-Rate": "24000",
                        "X-Bits-Per-Sample": "16",
                        "X-Endianness": "little"
                    }
                )
                
            logger.error("No audio segments generated")
            return JSONResponse(
                status_code=400,
                content={"error": "No audio generated", "detail": "The pipeline did not produce any audio"}
            )
            
        except Exception as e:
            logger.error(f"Error generating audio: {str(e)}")
            return JSONResponse(
                status_code=500,
                content={"error": "Audio generation failed", "detail": str(e)}
            )
    
    except Exception as e:
        logger.error(f"Unexpected error in generate_audio endpoint: {str(e)}")
        return JSONResponse(
            status_code=500,
            content={"error": "Internal server error", "detail": str(e)}
        )

@app.get("/")
async def root():
    return {"message": "Welcome to the Text-to-Speech API with Vision Support. Use POST /generate with 'text' and optionally 'image_base64' for queries."}

@app.exception_handler(404)
async def not_found_handler(request: Request, exc):
    return JSONResponse(
        status_code=404,
        content={"error": "Endpoint not found. Please use POST /generate for queries."}
    )

@app.exception_handler(405)
async def method_not_allowed_handler(request: Request, exc):
    return JSONResponse(
        status_code=405,
        content={"error": "Method not allowed. Please check the API documentation."}
    )