Spaces:
Sleeping
Sleeping
# from fastapi import FastAPI, Response | |
# from fastapi.responses import FileResponse | |
# from kokoro import KPipeline | |
# import soundfile as sf | |
# import os | |
# import numpy as np | |
# import torch | |
# from huggingface_hub import InferenceClient | |
# def llm_chat_response(text): | |
# HF_TOKEN = os.getenv("HF_TOKEN") | |
# client = InferenceClient(api_key=HF_TOKEN) | |
# messages = [ | |
# { | |
# "role": "user", | |
# "content": [ | |
# { | |
# "type": "text", | |
# "text": text + str('describe in one line only') | |
# } #, | |
# # { | |
# # "type": "image_url", | |
# # "image_url": { | |
# # "url": "https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg" | |
# # } | |
# # } | |
# ] | |
# } | |
# ] | |
# response_from_llama = client.chat.completions.create( | |
# model="meta-llama/Llama-3.2-11B-Vision-Instruct", | |
# messages=messages, | |
# max_tokens=500) | |
# return response_from_llama.choices[0].message['content'] | |
# app = FastAPI() | |
# # Initialize pipeline once at startup | |
# pipeline = KPipeline(lang_code='a') | |
# @app.post("/generate") | |
# async def generate_audio(text: str, voice: str = "af_heart", speed: float = 1.0): | |
# text_reply = llm_chat_response(text) | |
# # Generate audio | |
# generator = pipeline( | |
# text_reply, | |
# voice=voice, | |
# speed=speed, | |
# split_pattern=r'\n+' | |
# ) | |
# # # Save first segment only for demo | |
# # for i, (gs, ps, audio) in enumerate(generator): | |
# # sf.write(f"output_{i}.wav", audio, 24000) | |
# # return FileResponse( | |
# # f"output_{i}.wav", | |
# # media_type="audio/wav", | |
# # filename="output.wav" | |
# # ) | |
# # return Response("No audio generated", status_code=400) | |
# # Process only the first segment for demo | |
# for i, (gs, ps, audio) in enumerate(generator): | |
# # Convert PyTorch tensor to NumPy array | |
# audio_numpy = audio.cpu().numpy() | |
# # Convert to 16-bit PCM | |
# # Ensure the audio is in the range [-1, 1] | |
# audio_numpy = np.clip(audio_numpy, -1, 1) | |
# # Convert to 16-bit signed integers | |
# pcm_data = (audio_numpy * 32767).astype(np.int16) | |
# # Convert to bytes (automatically uses row-major order) | |
# raw_audio = pcm_data.tobytes() | |
# # Return PCM data with minimal necessary headers | |
# return Response( | |
# content=raw_audio, | |
# media_type="application/octet-stream", | |
# headers={ | |
# "Content-Disposition": f'attachment; filename="output.pcm"', | |
# "X-Sample-Rate": "24000", | |
# "X-Bits-Per-Sample": "16", | |
# "X-Endianness": "little" | |
# } | |
# ) | |
# return Response("No audio generated", status_code=400) | |
from fastapi import FastAPI, Response | |
from fastapi.responses import FileResponse | |
from kokoro import KPipeline | |
import soundfile as sf | |
import os | |
import numpy as np | |
import torch | |
from huggingface_hub import InferenceClient | |
from pydantic import BaseModel | |
import base64 | |
from io import BytesIO | |
from PIL import Image | |
class TextImageRequest(BaseModel): | |
text: str = None | |
image_base64: str = None | |
voice: str = "af_heart" | |
speed: float = 1.0 | |
def llm_chat_response(text, image_base64=None): | |
HF_TOKEN = os.getenv("HF_TOKEN") | |
client = InferenceClient(api_key=HF_TOKEN) | |
# Create a proper conversational format as required by the API | |
if image_base64: | |
# For image + text, we need to use the conversation format | |
messages = [ | |
{ | |
"role": "user", | |
"content": [ | |
{ | |
"type": "text", | |
"text": text if text else "Describe what you see in the image" | |
}, | |
{ | |
"type": "image", | |
"image": { | |
"data": image_base64 | |
} | |
} | |
] | |
} | |
] | |
else: | |
# Text only | |
messages = [ | |
{ | |
"role": "user", | |
"content": [ | |
{ | |
"type": "text", | |
"text": text + " Describe in one line only." | |
} | |
] | |
} | |
] | |
try: | |
response_from_llama = client.chat.completions.create( | |
model="meta-llama/Llama-3.2-11B-Vision-Instruct", | |
messages=messages, | |
max_tokens=500 | |
) | |
return response_from_llama.choices[0].message['content'] | |
except Exception as e: | |
print(f"Error calling LLM API: {e}") | |
# Fallback response in case of error | |
return "I couldn't process that image. Please try again with a different image or text query." | |
app = FastAPI() | |
# Initialize pipeline once at startup | |
pipeline = KPipeline(lang_code='a') | |
async def generate_audio(request: TextImageRequest): | |
# If no text is provided but image is provided, use default prompt | |
user_text = request.text | |
if user_text is None and request.image_base64: | |
user_text = "Describe what you see in the image" | |
elif user_text is None: | |
user_text = "" | |
# Generate response using text and image if provided | |
text_reply = llm_chat_response(user_text, request.image_base64) | |
# Generate audio | |
generator = pipeline( | |
text_reply, | |
voice=request.voice, | |
speed=request.speed, | |
split_pattern=r'\n+' | |
) | |
# Process only the first segment for demo | |
for i, (gs, ps, audio) in enumerate(generator): | |
# Convert PyTorch tensor to NumPy array | |
audio_numpy = audio.cpu().numpy() | |
# Convert to 16-bit PCM | |
# Ensure the audio is in the range [-1, 1] | |
audio_numpy = np.clip(audio_numpy, -1, 1) | |
# Convert to 16-bit signed integers | |
pcm_data = (audio_numpy * 32767).astype(np.int16) | |
# Convert to bytes (automatically uses row-major order) | |
raw_audio = pcm_data.tobytes() | |
# Return PCM data with minimal necessary headers | |
return Response( | |
content=raw_audio, | |
media_type="application/octet-stream", | |
headers={ | |
"Content-Disposition": f'attachment; filename="output.pcm"', | |
"X-Sample-Rate": "24000", | |
"X-Bits-Per-Sample": "16", | |
"X-Endianness": "little" | |
} | |
) | |
return Response("No audio generated", status_code=400) |