File size: 1,876 Bytes
e383bbb
31f7555
 
e383bbb
31f7555
 
 
 
 
 
e383bbb
31f7555
e383bbb
31f7555
 
e383bbb
 
31f7555
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import gradio as gr
import torch
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
from PIL import Image
import base64
from io import BytesIO

# You can change these:
BASE_MODEL = "runwayml/stable-diffusion-v1-5"
CONTROLNET_ID = "lllyasviel/sd-controlnet-canny"  # placeholder; change to a QR-focused ControlNet if you have one

device = "cuda" if torch.cuda.is_available() else "cpu"

controlnet = ControlNetModel.from_pretrained(
    CONTROLNET_ID, torch_dtype=torch.float16 if device=="cuda" else torch.float32
)

pipe = StableDiffusionControlNetPipeline.from_pretrained(
    BASE_MODEL,
    controlnet=controlnet,
    torch_dtype=torch.float16 if device=="cuda" else torch.float32,
    safety_checker=None
)
pipe.to(device)

def generate(prompt, control_image, guidance_scale=7.5, steps=30, seed=0):
    generator = torch.Generator(device=device).manual_seed(int(seed)) if seed else None
    img = pipe(
        prompt=prompt,
        image=control_image,
        num_inference_steps=int(steps),
        guidance_scale=float(guidance_scale),
        generator=generator
    ).images[0]
    return img

with gr.Blocks() as demo:
    gr.Markdown("# ControlNet Image Generator")
    with gr.Row():
        prompt = gr.Textbox(label="Prompt", value="A futuristic poster, high detail")
        seed = gr.Number(label="Seed (0=random)", value=0)
    with gr.Row():
        control = gr.Image(type="pil", label="Control image (e.g., QR or edge map)")
        steps = gr.Slider(10, 50, 30, step=1, label="Steps")
        guidance = gr.Slider(1.0, 12.0, 7.5, step=0.1, label="Guidance scale")
    out = gr.Image(label="Result")

    btn = gr.Button("Generate")
    btn.click(generate, [prompt, control, guidance, steps, seed], out)

    # Enable simple API use
    gr.Examples([], inputs=[prompt, control, guidance, steps, seed], outputs=out)

demo.launch()