Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,898 Bytes
3330f45 1fc8d06 b83d18f 3330f45 184daa2 b83d18f 3330f45 b83d18f 3330f45 b83d18f 3330f45 b83d18f 3330f45 b83d18f 3330f45 b83d18f 3330f45 b83d18f 3330f45 b83d18f 6a497cb 3330f45 b83d18f 3330f45 6a497cb 91f6a0e b83d18f 3330f45 6a497cb e9788d0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 |
import os, gc, random, re
import gradio as gr
import torch, spaces
from PIL import Image, ImageFilter
import numpy as np
import qrcode
from qrcode.constants import ERROR_CORRECT_H
from diffusers import (
StableDiffusionPipeline,
StableDiffusionControlNetPipeline,
ControlNetModel,
DPMSolverMultistepScheduler,
)
# Optional: silence matplotlib cache warning in Spaces
os.environ.setdefault("MPLCONFIGDIR", "/tmp/mpl")
MODEL_ID = "runwayml/stable-diffusion-v1-5"
CN_QRMON = "monster-labs/control_v1p_sd15_qrcode_monster" # v2 on the repo
DTYPE = torch.float16
# ---------- helpers ----------
def snap8(x: int) -> int:
x = max(256, min(1024, int(x)))
return x - (x % 8)
def normalize_color(c):
if c is None: return "white"
if isinstance(c, (tuple, list)):
r, g, b = (int(max(0, min(255, round(float(x))))) for x in c[:3]); return (r, g, b)
if isinstance(c, str):
s = c.strip()
if s.startswith("#"): return s
m = re.match(r"rgba?\(\s*([0-9.]+)\s*,\s*([0-9.]+)\s*,\s*([0-9.]+)", s, re.IGNORECASE)
if m:
r = int(max(0, min(255, round(float(m.group(1))))))
g = int(max(0, min(255, round(float(m.group(2))))))
b = int(max(0, min(255, round(float(m.group(3))))))
return (r, g, b)
return s
return "white"
def make_qr(url="http://www.mybirdfire.com", size=768, border=12, back_color="#808080", blur_radius=1.2):
# Mid-gray background improves blending & scan rate with QR-Monster v2. :contentReference[oaicite:1]{index=1}
qr = qrcode.QRCode(version=None, error_correction=ERROR_CORRECT_H, box_size=10, border=int(border))
qr.add_data(url.strip()); qr.make(fit=True)
img = qr.make_image(fill_color="black", back_color=normalize_color(back_color)).convert("RGB")
img = img.resize((int(size), int(size)), Image.NEAREST)
if blur_radius and blur_radius > 0:
img = img.filter(ImageFilter.GaussianBlur(radius=float(blur_radius)))
return img
def enforce_qr_contrast(stylized: Image.Image, qr_img: Image.Image, strength: float = 0.6, feather: float = 1.0) -> Image.Image:
"""Gently push ControlNet-required blacks/whites for scannability (simple post 'repair')."""
if strength <= 0: return stylized
q = qr_img.convert("L")
black_mask = q.point(lambda p: 255 if p < 128 else 0).filter(ImageFilter.GaussianBlur(radius=float(feather)))
black = np.asarray(black_mask, dtype=np.float32) / 255.0
white = 1.0 - black
s = np.asarray(stylized.convert("RGB"), dtype=np.float32) / 255.0
s = s * (1.0 - float(strength) * black[..., None]) # deepen blacks
s = s + (1.0 - s) * (float(strength) * 0.85 * white[..., None]) # lift whites
s = np.clip(s, 0.0, 1.0)
return Image.fromarray((s * 255.0).astype(np.uint8), mode="RGB")
# ---------- lazy pipelines (CPU-offloaded for ZeroGPU) ----------
_SD = None
_CN = None
def get_sd_pipe():
global _SD
if _SD is None:
pipe = StableDiffusionPipeline.from_pretrained(
MODEL_ID,
torch_dtype=DTYPE,
safety_checker=None,
use_safetensors=True,
low_cpu_mem_usage=True,
)
pipe.scheduler = DPMSolverMultistepScheduler.from_config(
pipe.scheduler.config, use_karras_sigmas=True, algorithm_type="dpmsolver++"
)
pipe.enable_attention_slicing(); pipe.enable_vae_slicing(); pipe.enable_model_cpu_offload()
_SD = pipe
return _SD
def get_qrmon_pipe():
global _CN
if _CN is None:
cn = ControlNetModel.from_pretrained(CN_QRMON, torch_dtype=DTYPE, use_safetensors=True)
pipe = StableDiffusionControlNetPipeline.from_pretrained(
MODEL_ID,
controlnet=cn,
torch_dtype=DTYPE,
safety_checker=None,
use_safetensors=True,
low_cpu_mem_usage=True,
)
pipe.scheduler = DPMSolverMultistepScheduler.from_config(
pipe.scheduler.config, use_karras_sigmas=True, algorithm_type="dpmsolver++"
)
pipe.enable_attention_slicing(); pipe.enable_vae_slicing(); pipe.enable_model_cpu_offload()
_CN = pipe
return _CN
# ---------- ZeroGPU tasks ----------
@spaces.GPU(duration=120)
def txt2img(prompt: str, negative: str, steps: int, cfg: float, width: int, height: int, seed: int):
pipe = get_sd_pipe()
w, h = snap8(width), snap8(height)
if int(seed) < 0:
seed = random.randint(0, 2**31 - 1)
gen = torch.Generator(device="cuda").manual_seed(int(seed))
if torch.cuda.is_available(): torch.cuda.empty_cache()
gc.collect()
with torch.autocast(device_type="cuda", dtype=DTYPE):
out = pipe(
prompt=str(prompt),
negative_prompt=str(negative or ""),
num_inference_steps=int(steps),
guidance_scale=float(cfg),
width=w, height=h,
generator=gen,
)
return out.images[0]
@spaces.GPU(duration=120)
def qr_stylize(url: str, style_prompt: str, negative: str, steps: int, cfg: float,
size: int, border: int, back_color: str, blur: float,
qr_weight: float, repair_strength: float, feather: float, seed: int):
pipe = get_qrmon_pipe()
s = snap8(size)
qr_img = make_qr(url=url, size=s, border=int(border), back_color=back_color, blur_radius=float(blur))
if int(seed) < 0:
seed = random.randint(0, 2**31 - 1)
gen = torch.Generator(device="cuda").manual_seed(int(seed))
# Tip from the article: don't stuff "QR code" into the prompt; let ControlNet shape it. :contentReference[oaicite:2]{index=2}
if torch.cuda.is_available(): torch.cuda.empty_cache()
gc.collect()
with torch.autocast(device_type="cuda", dtype=DTYPE):
out = pipe(
prompt=str(style_prompt),
negative_prompt=str(negative or ""),
control_image=qr_img,
controlnet_conditioning_scale=float(qr_weight),
num_inference_steps=int(steps),
guidance_scale=float(cfg),
width=s, height=s,
generator=gen,
)
img = out.images[0]
img = enforce_qr_contrast(img, qr_img, strength=float(repair_strength), feather=float(feather))
return img, qr_img
# ---------- UI ----------
with gr.Blocks() as demo:
gr.Markdown("# ZeroGPU Stable Diffusion + AI QR Codes (Monster v2)")
with gr.Tab("Text → Image"):
prompt = gr.Textbox(label="Prompt", value="a cozy reading nook, warm sunlight, cinematic lighting, highly detailed")
negative = gr.Textbox(label="Negative (optional)", value="lowres, blurry, watermark, text")
steps = gr.Slider(8, 40, value=28, step=1, label="Steps")
cfg = gr.Slider(1.0, 12.0, value=7.0, step=0.5, label="CFG")
width = gr.Slider(256, 1024, value=640, step=16, label="Width")
height = gr.Slider(256, 1024, value=640, step=16, label="Height")
seed = gr.Number(value=-1, precision=0, label="Seed (-1 random)")
out_img = gr.Image(label="Image", interactive=False)
gr.Button("Generate").click(txt2img, [prompt, negative, steps, cfg, width, height, seed], out_img)
with gr.Tab("QR Code Stylizer (ControlNet Monster)"):
url = gr.Textbox(label="URL/Text", value="http://www.mybirdfire.com")
s_prompt = gr.Textbox(label="Style prompt (no 'QR code' needed)", value="baroque palace interior, intricate roots, dramatic lighting, ultra detailed")
s_negative= gr.Textbox(label="Negative prompt", value="lowres, low contrast, blurry, jpeg artifacts, worst quality, watermark, text")
size = gr.Slider(384, 1024, value=768, step=64, label="Canvas (px)")
steps2 = gr.Slider(10, 50, value=28, step=1, label="Steps")
cfg2 = gr.Slider(1.0, 12.0, value=6.5, step=0.1, label="CFG")
border = gr.Slider(4, 20, value=12, step=1, label="QR border (quiet zone)")
back_col = gr.ColorPicker(value="#808080", label="QR background")
blur = gr.Slider(0.0, 3.0, value=1.2, step=0.1, label="Soften control (blur)")
qr_w = gr.Slider(0.6, 1.6, value=1.2, step=0.05, label="QR control weight")
repair = gr.Slider(0.0, 1.0, value=0.6, step=0.05, label="Post repair strength")
feather = gr.Slider(0.0, 3.0, value=1.0, step=0.1, label="Repair feather (px)")
seed2 = gr.Number(value=-1, precision=0, label="Seed (-1 random)")
final_img = gr.Image(label="Final stylized QR")
ctrl_img = gr.Image(label="Control QR used")
gr.Button("Stylize QR").click(
qr_stylize,
[url, s_prompt, s_negative, steps2, cfg2, size, border, back_col, blur, qr_w, repair, feather, seed2],
[final_img, ctrl_img]
)
if __name__ == "__main__":
demo.queue(max_size=12).launch()
|