File size: 8,898 Bytes
3330f45
1fc8d06
b83d18f
3330f45
 
 
 
 
 
 
 
 
 
 
 
 
184daa2
b83d18f
3330f45
b83d18f
 
3330f45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b83d18f
 
 
 
 
 
 
 
 
 
3330f45
 
 
b83d18f
3330f45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b83d18f
3330f45
b83d18f
3330f45
 
b83d18f
 
 
 
3330f45
b83d18f
 
 
 
 
 
 
 
 
 
 
6a497cb
3330f45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b83d18f
3330f45
6a497cb
91f6a0e
b83d18f
 
 
 
 
 
 
 
3330f45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a497cb
 
e9788d0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import os, gc, random, re
import gradio as gr
import torch, spaces
from PIL import Image, ImageFilter
import numpy as np
import qrcode
from qrcode.constants import ERROR_CORRECT_H
from diffusers import (
    StableDiffusionPipeline,
    StableDiffusionControlNetPipeline,
    ControlNetModel,
    DPMSolverMultistepScheduler,
)

# Optional: silence matplotlib cache warning in Spaces
os.environ.setdefault("MPLCONFIGDIR", "/tmp/mpl")

MODEL_ID = "runwayml/stable-diffusion-v1-5"
CN_QRMON = "monster-labs/control_v1p_sd15_qrcode_monster"  # v2 on the repo
DTYPE = torch.float16

# ---------- helpers ----------
def snap8(x: int) -> int:
    x = max(256, min(1024, int(x)))
    return x - (x % 8)

def normalize_color(c):
    if c is None: return "white"
    if isinstance(c, (tuple, list)):
        r, g, b = (int(max(0, min(255, round(float(x))))) for x in c[:3]); return (r, g, b)
    if isinstance(c, str):
        s = c.strip()
        if s.startswith("#"): return s
        m = re.match(r"rgba?\(\s*([0-9.]+)\s*,\s*([0-9.]+)\s*,\s*([0-9.]+)", s, re.IGNORECASE)
        if m:
            r = int(max(0, min(255, round(float(m.group(1))))))
            g = int(max(0, min(255, round(float(m.group(2))))))
            b = int(max(0, min(255, round(float(m.group(3))))))
            return (r, g, b)
        return s
    return "white"

def make_qr(url="http://www.mybirdfire.com", size=768, border=12, back_color="#808080", blur_radius=1.2):
    # Mid-gray background improves blending & scan rate with QR-Monster v2. :contentReference[oaicite:1]{index=1}
    qr = qrcode.QRCode(version=None, error_correction=ERROR_CORRECT_H, box_size=10, border=int(border))
    qr.add_data(url.strip()); qr.make(fit=True)
    img = qr.make_image(fill_color="black", back_color=normalize_color(back_color)).convert("RGB")
    img = img.resize((int(size), int(size)), Image.NEAREST)
    if blur_radius and blur_radius > 0:
        img = img.filter(ImageFilter.GaussianBlur(radius=float(blur_radius)))
    return img

def enforce_qr_contrast(stylized: Image.Image, qr_img: Image.Image, strength: float = 0.6, feather: float = 1.0) -> Image.Image:
    """Gently push ControlNet-required blacks/whites for scannability (simple post 'repair')."""
    if strength <= 0: return stylized
    q = qr_img.convert("L")
    black_mask = q.point(lambda p: 255 if p < 128 else 0).filter(ImageFilter.GaussianBlur(radius=float(feather)))
    black = np.asarray(black_mask, dtype=np.float32) / 255.0
    white = 1.0 - black
    s = np.asarray(stylized.convert("RGB"), dtype=np.float32) / 255.0
    s = s * (1.0 - float(strength) * black[..., None])                    # deepen blacks
    s = s + (1.0 - s) * (float(strength) * 0.85 * white[..., None])       # lift whites
    s = np.clip(s, 0.0, 1.0)
    return Image.fromarray((s * 255.0).astype(np.uint8), mode="RGB")

# ---------- lazy pipelines (CPU-offloaded for ZeroGPU) ----------
_SD = None
_CN = None

def get_sd_pipe():
    global _SD
    if _SD is None:
        pipe = StableDiffusionPipeline.from_pretrained(
            MODEL_ID,
            torch_dtype=DTYPE,
            safety_checker=None,
            use_safetensors=True,
            low_cpu_mem_usage=True,
        )
        pipe.scheduler = DPMSolverMultistepScheduler.from_config(
            pipe.scheduler.config, use_karras_sigmas=True, algorithm_type="dpmsolver++"
        )
        pipe.enable_attention_slicing(); pipe.enable_vae_slicing(); pipe.enable_model_cpu_offload()
        _SD = pipe
    return _SD

def get_qrmon_pipe():
    global _CN
    if _CN is None:
        cn = ControlNetModel.from_pretrained(CN_QRMON, torch_dtype=DTYPE, use_safetensors=True)
        pipe = StableDiffusionControlNetPipeline.from_pretrained(
            MODEL_ID,
            controlnet=cn,
            torch_dtype=DTYPE,
            safety_checker=None,
            use_safetensors=True,
            low_cpu_mem_usage=True,
        )
        pipe.scheduler = DPMSolverMultistepScheduler.from_config(
            pipe.scheduler.config, use_karras_sigmas=True, algorithm_type="dpmsolver++"
        )
        pipe.enable_attention_slicing(); pipe.enable_vae_slicing(); pipe.enable_model_cpu_offload()
        _CN = pipe
    return _CN

# ---------- ZeroGPU tasks ----------
@spaces.GPU(duration=120)
def txt2img(prompt: str, negative: str, steps: int, cfg: float, width: int, height: int, seed: int):
    pipe = get_sd_pipe()
    w, h = snap8(width), snap8(height)
    if int(seed) < 0:
        seed = random.randint(0, 2**31 - 1)
    gen = torch.Generator(device="cuda").manual_seed(int(seed))
    if torch.cuda.is_available(): torch.cuda.empty_cache()
    gc.collect()
    with torch.autocast(device_type="cuda", dtype=DTYPE):
        out = pipe(
            prompt=str(prompt),
            negative_prompt=str(negative or ""),
            num_inference_steps=int(steps),
            guidance_scale=float(cfg),
            width=w, height=h,
            generator=gen,
        )
    return out.images[0]

@spaces.GPU(duration=120)
def qr_stylize(url: str, style_prompt: str, negative: str, steps: int, cfg: float,
               size: int, border: int, back_color: str, blur: float,
               qr_weight: float, repair_strength: float, feather: float, seed: int):
    pipe = get_qrmon_pipe()
    s = snap8(size)
    qr_img = make_qr(url=url, size=s, border=int(border), back_color=back_color, blur_radius=float(blur))

    if int(seed) < 0:
        seed = random.randint(0, 2**31 - 1)
    gen = torch.Generator(device="cuda").manual_seed(int(seed))

    # Tip from the article: don't stuff "QR code" into the prompt; let ControlNet shape it. :contentReference[oaicite:2]{index=2}
    if torch.cuda.is_available(): torch.cuda.empty_cache()
    gc.collect()

    with torch.autocast(device_type="cuda", dtype=DTYPE):
        out = pipe(
            prompt=str(style_prompt),
            negative_prompt=str(negative or ""),
            control_image=qr_img,
            controlnet_conditioning_scale=float(qr_weight),
            num_inference_steps=int(steps),
            guidance_scale=float(cfg),
            width=s, height=s,
            generator=gen,
        )
    img = out.images[0]
    img = enforce_qr_contrast(img, qr_img, strength=float(repair_strength), feather=float(feather))
    return img, qr_img

# ---------- UI ----------
with gr.Blocks() as demo:
    gr.Markdown("# ZeroGPU Stable Diffusion + AI QR Codes (Monster v2)")

    with gr.Tab("Text → Image"):
        prompt  = gr.Textbox(label="Prompt", value="a cozy reading nook, warm sunlight, cinematic lighting, highly detailed")
        negative = gr.Textbox(label="Negative (optional)", value="lowres, blurry, watermark, text")
        steps   = gr.Slider(8, 40, value=28, step=1, label="Steps")
        cfg     = gr.Slider(1.0, 12.0, value=7.0, step=0.5, label="CFG")
        width   = gr.Slider(256, 1024, value=640, step=16, label="Width")
        height  = gr.Slider(256, 1024, value=640, step=16, label="Height")
        seed    = gr.Number(value=-1, precision=0, label="Seed (-1 random)")
        out_img = gr.Image(label="Image", interactive=False)
        gr.Button("Generate").click(txt2img, [prompt, negative, steps, cfg, width, height, seed], out_img)

    with gr.Tab("QR Code Stylizer (ControlNet Monster)"):
        url       = gr.Textbox(label="URL/Text", value="http://www.mybirdfire.com")
        s_prompt  = gr.Textbox(label="Style prompt (no 'QR code' needed)", value="baroque palace interior, intricate roots, dramatic lighting, ultra detailed")
        s_negative= gr.Textbox(label="Negative prompt", value="lowres, low contrast, blurry, jpeg artifacts, worst quality, watermark, text")
        size      = gr.Slider(384, 1024, value=768, step=64, label="Canvas (px)")
        steps2    = gr.Slider(10, 50, value=28, step=1, label="Steps")
        cfg2      = gr.Slider(1.0, 12.0, value=6.5, step=0.1, label="CFG")
        border    = gr.Slider(4, 20, value=12, step=1, label="QR border (quiet zone)")
        back_col  = gr.ColorPicker(value="#808080", label="QR background")
        blur      = gr.Slider(0.0, 3.0, value=1.2, step=0.1, label="Soften control (blur)")
        qr_w      = gr.Slider(0.6, 1.6, value=1.2, step=0.05, label="QR control weight")
        repair    = gr.Slider(0.0, 1.0, value=0.6, step=0.05, label="Post repair strength")
        feather   = gr.Slider(0.0, 3.0, value=1.0, step=0.1, label="Repair feather (px)")
        seed2     = gr.Number(value=-1, precision=0, label="Seed (-1 random)")
        final_img = gr.Image(label="Final stylized QR")
        ctrl_img  = gr.Image(label="Control QR used")
        gr.Button("Stylize QR").click(
            qr_stylize,
            [url, s_prompt, s_negative, steps2, cfg2, size, border, back_col, blur, qr_w, repair, feather, seed2],
            [final_img, ctrl_img]
        )

if __name__ == "__main__":
    demo.queue(max_size=12).launch()