Spaces:
Running
on
Zero
Running
on
Zero
File size: 12,346 Bytes
6ae079b 1fc8d06 6ae079b d25b42d 184daa2 e20d060 6ae079b e20d060 6ae079b 56a99b7 6ae079b e20d060 6ae079b e20d060 6ae079b e20d060 6ae079b e20d060 6ae079b e20d060 6ae079b e20d060 d25b42d 6ae079b 56a99b7 6ae079b 3315876 56a99b7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 |
import os, re, gc, random
import numpy as np
from contextlib import nullcontext
from typing import Tuple
import gradio as gr
from PIL import Image, ImageFilter
import qrcode
from qrcode.constants import ERROR_CORRECT_H
import torch
from diffusers import (
StableDiffusionPipeline,
StableDiffusionControlNetImg2ImgPipeline,
ControlNetModel,
DPMSolverMultistepScheduler,
)
import spaces # ZeroGPU decorator
# =========================================================
# Auth (optional for private models)
# =========================================================
hf_token = os.getenv("HF_TOKEN")
AUTH_KW = {"token": hf_token} if hf_token else {}
# =========================================================
# Helpers (untouched logic)
# =========================================================
def normalize_color(c):
if c is None: return "white"
if isinstance(c, (tuple, list)):
r, g, b = (int(max(0, min(255, round(float(x))))) for x in c[:3]); return (r, g, b)
if isinstance(c, str):
s = c.strip()
if s.startswith("#"): return s
m = re.match(r"rgba?\(\s*([0-9.]+)\s*,\s*([0-9.]+)\s*,\s*([0-9.]+)", s, re.IGNORECASE)
if m:
r = int(max(0, min(255, round(float(m.group(1))))))
g = int(max(0, min(255, round(float(m.group(2))))))
b = int(max(0, min(255, round(float(m.group(3))))))
return (r, g, b)
return s
return "white"
def strengthen_qr_prompts(pos: str, neg: str) -> Tuple[str, str]:
# DON’T say “QR code” here – let ControlNet impose it
pos = (pos or "").strip()
neg = (neg or "").strip()
pos2 = f"{pos}, high contrast lighting, clean details, cohesive composition".strip(", ")
add_neg = "frame, border, ornate frame, watermark, text, numbers, checkerboard, mosaic, halftone, repeated pattern, glitch"
neg2 = (neg + (", " if neg else "") + add_neg).strip(", ").strip()
return pos2, neg2
def enforce_qr_contrast(stylized: Image.Image, qr_img: Image.Image, strength: float = 0.6, feather: float = 1.0) -> Image.Image:
if strength <= 0: return stylized
q = qr_img.convert("L")
black_mask = q.point(lambda p: 255 if p < 128 else 0).filter(ImageFilter.GaussianBlur(radius=float(feather)))
black = np.asarray(black_mask, dtype=np.float32) / 255.0
white = 1.0 - black
s = np.asarray(stylized.convert("RGB"), dtype=np.float32) / 255.0
s = s * (1.0 - float(strength) * black[..., None])
s = s + (1.0 - s) * (float(strength) * 0.85 * white[..., None])
s = np.clip(s, 0.0, 1.0)
return Image.fromarray((s * 255.0).astype(np.uint8), mode="RGB")
# =========================================================
# Models & loading (ZeroGPU-friendly lazy load)
# =========================================================
BASE_15 = "runwayml/stable-diffusion-v1-5"
QR_MONSTER_15 = "monster-labs/control_v1p_sd15_qrcode_monster" # v2 subfolder is handled by authors; base path is fine
BRIGHTNESS_15 = "latentcat/control_v1p_sd15_brightness" # optional helper
_sd = {"pipe": None}
_cn = {"pipe": None}
def _setup_scheduler(pipe):
pipe.scheduler = DPMSolverMultistepScheduler.from_config(
pipe.scheduler.config,
use_karras_sigmas=True,
algorithm_type="dpmsolver++"
)
def _enable_memory_savers(pipe):
# Good defaults for Spaces/ZeroGPU
pipe.enable_attention_slicing()
pipe.enable_vae_slicing()
pipe.enable_vae_tiling()
pipe.enable_model_cpu_offload()
def _load_sd_txt2img():
if _sd["pipe"] is None:
pipe = StableDiffusionPipeline.from_pretrained(
BASE_15,
torch_dtype=torch.float16,
safety_checker=None,
use_safetensors=True,
low_cpu_mem_usage=True,
**AUTH_KW
)
_setup_scheduler(pipe)
_enable_memory_savers(pipe)
_sd["pipe"] = pipe
return _sd["pipe"]
def _load_cn_img2img():
if _cn["pipe"] is None:
qrnet = ControlNetModel.from_pretrained(
QR_MONSTER_15, torch_dtype=torch.float16, use_safetensors=True, **AUTH_KW
)
bright = ControlNetModel.from_pretrained(
BRIGHTNESS_15, torch_dtype=torch.float16, use_safetensors=True, **AUTH_KW
)
pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(
BASE_15,
controlnet=[qrnet, bright],
torch_dtype=torch.float16,
safety_checker=None,
use_safetensors=True,
low_cpu_mem_usage=True,
**AUTH_KW
)
_setup_scheduler(pipe)
_enable_memory_savers(pipe)
_cn["pipe"] = pipe
return _cn["pipe"]
# =========================================================
# Generation utilities (use inside @spaces.GPU)
# =========================================================
def sd_generate(prompt, negative, steps, guidance, seed, size=512):
pipe = _load_sd_txt2img()
# Reproducible generator — on GPU if available
gen = torch.Generator(device="cuda" if torch.cuda.is_available() else "cpu")
if int(seed) != 0:
gen = gen.manual_seed(int(seed))
else:
gen = gen.manual_seed(random.randint(0, 2**31 - 1))
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
out = pipe(
prompt=prompt,
negative_prompt=negative or "",
num_inference_steps=int(steps),
guidance_scale=float(guidance),
width=int(size), height=int(size),
generator=gen
)
return out.images[0]
def make_qr(url="http://www.mybirdfire.com", size=512, border=10, back_color="#808080", blur_radius=0.0):
qr = qrcode.QRCode(version=None, error_correction=ERROR_CORRECT_H, box_size=10, border=int(border))
qr.add_data(url.strip()); qr.make(fit=True)
bg = normalize_color(back_color)
img = qr.make_image(fill_color="black", back_color=bg).convert("RGB").resize((size, size), Image.NEAREST)
if blur_radius and blur_radius > 0:
img = img.filter(ImageFilter.GaussianBlur(radius=float(blur_radius)))
return img
NEG_DEFAULT = "lowres, low contrast, blurry, jpeg artifacts, worst quality, bad anatomy, extra digits"
# =========================================================
# Main two-stage generator (ZeroGPU-guarded)
# =========================================================
@spaces.GPU(duration=120) # allocate GPU only while generating
def qr_art_two_stage(
prompt, negative,
base_steps, base_cfg, base_seed,
stylize_steps, stylize_cfg, stylize_seed,
size, url, border, back_color,
denoise, qr_weight, bright_weight,
qr_start, qr_end, bright_start, bright_end,
control_blur, repair_strength, feather_px
):
size = max(384, int(size) // 8 * 8)
# Stage A: base art (txt2img)
p_pos, p_neg = strengthen_qr_prompts(prompt, negative)
base_img = sd_generate(p_pos, p_neg, base_steps, base_cfg, base_seed, size=size)
# Stage B: img2img + ControlNet
qr_img = make_qr(url=url, size=size, border=border, back_color=back_color, blur_radius=control_blur)
pipe = _load_cn_img2img()
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
gen = torch.Generator(device="cuda" if torch.cuda.is_available() else "cpu")
if int(stylize_seed) != 0:
gen = gen.manual_seed(int(stylize_seed))
else:
gen = gen.manual_seed(random.randint(0, 2**31 - 1))
kwargs = dict(
prompt=p_pos,
negative_prompt=p_neg or NEG_DEFAULT,
image=base_img, # init image for img2img
control_image=[qr_img, qr_img], # Monster + Brightness
strength=float(denoise), # how much we allow change
num_inference_steps=int(stylize_steps),
guidance_scale=float(stylize_cfg),
generator=gen,
controlnet_conditioning_scale=[float(qr_weight), float(bright_weight)],
width=size, height=size, # (diffusers uses init image size; harmless here)
)
try:
out = pipe(
**kwargs,
control_guidance_start=[float(qr_start), float(bright_start)],
control_guidance_end=[float(qr_end), float(bright_end)],
)
except TypeError:
out = pipe(
**kwargs,
controlnet_start=[float(qr_start), float(bright_start)],
controlnet_end=[float(qr_end), float(bright_end)],
)
img = out.images[0]
# Optional post repair to push blacks/whites where modules demand
img = enforce_qr_contrast(img, qr_img, strength=float(repair_strength), feather=float(feather_px))
return img, base_img, qr_img
# =========================================================
# UI (Gradio Space)
# =========================================================
with gr.Blocks() as demo:
gr.Markdown("## 🧩 QR-Code Monster — Two-Stage (txt2img → img2img + ControlNet) — ZeroGPU")
with gr.Tab("Two-Stage QR Art"):
with gr.Row():
with gr.Column():
url = gr.Textbox(label="URL/Text", value="http://www.mybirdfire.com")
prompt = gr.Textbox(
label="Style prompt (no 'QR code' here)",
value="baroque palace interior with intricate roots, cinematic, dramatic lighting, ultra detailed"
)
negative = gr.Textbox(label="Negative", value="")
size = gr.Slider(512, 1024, value=768, step=64, label="Canvas (px)")
gr.Markdown("**Stage A — Base art (txt2img)**")
base_steps = gr.Slider(10, 60, value=26, step=1, label="Base steps")
base_cfg = gr.Slider(1.0, 12.0, value=6.0, step=0.1, label="Base CFG")
base_seed = gr.Number(value=0, precision=0, label="Base seed (0=random)")
gr.Markdown("**Stage B — ControlNet img2img**")
stylize_steps = gr.Slider(10, 60, value=28, step=1, label="Stylize steps")
stylize_cfg = gr.Slider(1.0, 12.0, value=6.0, step=0.1, label="Stylize CFG")
stylize_seed = gr.Number(value=0, precision=0, label="Stylize seed (0=random)")
denoise = gr.Slider(0.1, 0.8, value=0.48, step=0.01, label="Denoising strength (keep composition lower)")
qr_weight = gr.Slider(0.5, 1.7, value=1.2, step=0.05, label="QR Monster weight")
bright_weight = gr.Slider(0.0, 1.0, value=0.20, step=0.05, label="Brightness weight")
qr_start = gr.Slider(0.0, 1.0, value=0.05, step=0.01, label="QR start")
qr_end = gr.Slider(0.0, 1.0, value=0.95, step=0.01, label="QR end")
bright_start = gr.Slider(0.0, 1.0, value=0.40, step=0.01, label="Brightness start")
bright_end = gr.Slider(0.0, 1.0, value=0.85, step=0.01, label="Brightness end")
border = gr.Slider(4, 20, value=12, step=1, label="QR border (quiet zone)")
back_color = gr.ColorPicker(value="#808080", label="QR background (mid-gray blends better)")
control_blur = gr.Slider(0.0, 3.0, value=1.2, step=0.1, label="Soften control (Gaussian blur radius)")
repair_strength = gr.Slider(0.0, 1.0, value=0.65, step=0.05, label="Post repair strength")
feather_px = gr.Slider(0.0, 3.0, value=1.0, step=0.1, label="Repair feather (px)")
go = gr.Button("Generate QR Art", variant="primary")
with gr.Column():
final_img = gr.Image(label="Final stylized QR")
base_img = gr.Image(label="Base art (Stage A)")
ctrl_img = gr.Image(label="Control image (QR used)")
go.click(
qr_art_two_stage,
inputs=[prompt, negative,
base_steps, base_cfg, base_seed,
stylize_steps, stylize_cfg, stylize_seed,
size, url, border, back_color,
denoise, qr_weight, bright_weight,
qr_start, qr_end, bright_start, bright_end,
control_blur, repair_strength, feather_px],
outputs=[final_img, base_img, ctrl_img]
)
if __name__ == "__main__":
demo.launch()
|