Tanut
Fix style
2e2f472
raw
history blame
5.85 kB
import gradio as gr
import torch
from diffusers import StableDiffusionPipeline
from PIL import Image
import qrcode
from qrcode.constants import ERROR_CORRECT_H
# ========= device/dtype =========
device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
dtype = torch.float16 if device != "cpu" else torch.float32
# ========= SD 1.5 (prompt-only) =========
sd_pipe = StableDiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
torch_dtype=dtype
).to(device)
def sd_generate(prompt, negative, steps, guidance, seed):
gen = torch.Generator(device=device).manual_seed(int(seed)) if int(seed) != 0 else None
def run():
return sd_pipe(
prompt,
negative_prompt=negative or "",
num_inference_steps=int(steps),
guidance_scale=float(guidance),
generator=gen
).images[0]
if device in ("cuda", "mps"):
with torch.autocast(device):
return run()
return run()
# ========= QR Maker =========
def make_qr(url: str = "http://www.mybirdfire.com", size: int = 512, border: int = 4) -> Image.Image:
qr = qrcode.QRCode(
version=None,
error_correction=ERROR_CORRECT_H, # highest EC
box_size=10,
border=border
)
qr.add_data(url.strip())
qr.make(fit=True)
img = qr.make_image(fill_color="black", back_color="white").convert("RGB")
return img.resize((size, size), resample=Image.NEAREST)
# ========= SDXL dual ControlNet stylizer (canny + softedge) =========
from diffusers import StableDiffusionXLControlNetPipeline, ControlNetModel
from diffusers.schedulers.scheduling_euler_discrete import EulerDiscreteScheduler
from controlnet_aux import CannyDetector
SDXL_MODEL = "stabilityai/stable-diffusion-xl-base-1.0" # swap to your SDXL anime model if desired
CN_CANNY = "diffusers/controlnet-canny-sdxl-1.0"
CN_SOFT = "diffusers/controlnet-softedge-sdxl-1.0" # <-- replaces non-existent tile SDXL
_sdxl = {"pipe": None}
def _load_sdxl_dual():
if _sdxl["pipe"] is None:
cn1 = ControlNetModel.from_pretrained(CN_CANNY, torch_dtype=dtype)
cn2 = ControlNetModel.from_pretrained(CN_SOFT, torch_dtype=dtype)
pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
SDXL_MODEL, controlnet=[cn1, cn2], torch_dtype=dtype, safety_checker=None
).to(device)
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config)
pipe.enable_vae_slicing()
_sdxl["pipe"] = pipe
_sdxl["canny"] = CannyDetector()
return _sdxl["pipe"], _sdxl["canny"]
NEG = "lowres, low contrast, blurry, jpeg artifacts, worst quality, extra digits, bad anatomy"
def stylize_qr_sdxl(prompt: str, steps: int=28, guidance: float=7.0, seed: int=1470713301,
canny_low: int=80, canny_high: int=160):
# 1) make a strong QR @1024
qr = make_qr("http://www.mybirdfire.com", size=1024, border=6)
# 2) edges for canny CN
pipe, canny = _load_sdxl_dual()
edges = canny(qr, low_threshold=int(canny_low), high_threshold=int(canny_high))
gen = torch.Generator(device=device).manual_seed(int(seed)) if int(seed)!=0 else None
# Control weights + schedule (canny, softedge)
cn_scales = [1.1, 0.6]
cn_start = [0.25, 0.00]
cn_end = [0.95, 1.00]
def run():
img = pipe(
prompt=prompt,
negative_prompt=NEG,
image=[edges, qr], # canny first, softedge second
controlnet_conditioning_scale=cn_scales,
control_guidance_start=cn_start,
control_guidance_end=cn_end,
num_inference_steps=int(steps),
guidance_scale=float(guidance),
generator=gen
).images[0]
return img
if device in ("cuda", "mps"):
with torch.autocast(device):
return run()
return run()
# ========= UI =========
with gr.Blocks() as demo:
gr.Markdown("## Stable Diffusion + QR Code + ControlNet")
with gr.Tab("Stable Diffusion (prompt → image)"):
prompt = gr.Textbox(label="Prompt", value="Sky, Moon, Bird, Blue, In the dark, Goddess, Sweet, Beautiful, Fantasy, Art, Anime")
negative = gr.Textbox(label="Negative Prompt", value="lowres, bad anatomy, worst quality")
steps = gr.Slider(10, 50, value=30, label="Steps", step=1)
cfg = gr.Slider(1, 12, value=7.0, label="Guidance Scale", step=0.1)
seed = gr.Number(value=0, label="Seed (0 = random)", precision=0)
out_sd = gr.Image(label="Generated Image")
gr.Button("Generate").click(sd_generate, [prompt, negative, steps, cfg, seed], out_sd)
with gr.Tab("QR Maker (mybirdfire)"):
url = gr.Textbox(label="URL/Text", value="http://www.mybirdfire.com")
size = gr.Slider(256, 1024, value=512, step=64, label="Size (px)")
quiet = gr.Slider(0, 8, value=4, step=1, label="Border (quiet zone)")
out_qr = gr.Image(label="QR Code", type="pil")
gr.Button("Generate QR").click(make_qr, [url, size, quiet], out_qr)
with gr.Tab("QR Stylizer (SDXL canny + softedge)"):
p = gr.Textbox(label="Prompt", value="Sky, Moon, Bird, Blue, In the dark, Goddess, Sweet, Beautiful, Fantasy, Art, Anime")
st = gr.Slider(20, 40, 28, step=1, label="Steps")
cfg = gr.Slider(4.5, 9.0, 7.0, step=0.1, label="CFG")
sd = gr.Number(value=1470713301, label="Seed", precision=0)
cl = gr.Slider(0, 255, 80, step=1, label="Canny low")
ch = gr.Slider(0, 255, 160, step=1, label="Canny high")
out = gr.Image(label="Stylized QR (SDXL)")
gr.Button("Stylize").click(stylize_qr_sdxl, [p, st, cfg, sd, cl, ch], out)
if __name__ == "__main__":
demo.launch()