Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import torch | |
from diffusers import StableDiffusionPipeline | |
from PIL import Image | |
import qrcode | |
from qrcode.constants import ERROR_CORRECT_H | |
# ========= device/dtype ========= | |
device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu" | |
dtype = torch.float16 if device != "cpu" else torch.float32 | |
# ========= SD 1.5 (prompt-only) ========= | |
sd_pipe = StableDiffusionPipeline.from_pretrained( | |
"runwayml/stable-diffusion-v1-5", | |
torch_dtype=dtype | |
).to(device) | |
def sd_generate(prompt, negative, steps, guidance, seed): | |
gen = torch.Generator(device=device).manual_seed(int(seed)) if int(seed) != 0 else None | |
def run(): | |
return sd_pipe( | |
prompt, | |
negative_prompt=negative or "", | |
num_inference_steps=int(steps), | |
guidance_scale=float(guidance), | |
generator=gen | |
).images[0] | |
if device in ("cuda", "mps"): | |
with torch.autocast(device): | |
return run() | |
return run() | |
# ========= QR Maker ========= | |
def make_qr(url: str = "http://www.mybirdfire.com", size: int = 512, border: int = 4) -> Image.Image: | |
qr = qrcode.QRCode( | |
version=None, | |
error_correction=ERROR_CORRECT_H, # highest EC | |
box_size=10, | |
border=border | |
) | |
qr.add_data(url.strip()) | |
qr.make(fit=True) | |
img = qr.make_image(fill_color="black", back_color="white").convert("RGB") | |
return img.resize((size, size), resample=Image.NEAREST) | |
# ========= SDXL dual ControlNet stylizer (canny + softedge) ========= | |
from diffusers import StableDiffusionXLControlNetPipeline, ControlNetModel | |
from diffusers.schedulers.scheduling_euler_discrete import EulerDiscreteScheduler | |
from controlnet_aux import CannyDetector | |
SDXL_MODEL = "stabilityai/stable-diffusion-xl-base-1.0" # swap to your SDXL anime model if desired | |
CN_CANNY = "diffusers/controlnet-canny-sdxl-1.0" | |
CN_SOFT = "diffusers/controlnet-softedge-sdxl-1.0" # <-- replaces non-existent tile SDXL | |
_sdxl = {"pipe": None} | |
def _load_sdxl_dual(): | |
if _sdxl["pipe"] is None: | |
cn1 = ControlNetModel.from_pretrained(CN_CANNY, torch_dtype=dtype) | |
cn2 = ControlNetModel.from_pretrained(CN_SOFT, torch_dtype=dtype) | |
pipe = StableDiffusionXLControlNetPipeline.from_pretrained( | |
SDXL_MODEL, controlnet=[cn1, cn2], torch_dtype=dtype, safety_checker=None | |
).to(device) | |
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config) | |
pipe.enable_vae_slicing() | |
_sdxl["pipe"] = pipe | |
_sdxl["canny"] = CannyDetector() | |
return _sdxl["pipe"], _sdxl["canny"] | |
NEG = "lowres, low contrast, blurry, jpeg artifacts, worst quality, extra digits, bad anatomy" | |
def stylize_qr_sdxl(prompt: str, steps: int=28, guidance: float=7.0, seed: int=1470713301, | |
canny_low: int=80, canny_high: int=160): | |
# 1) make a strong QR @1024 | |
qr = make_qr("http://www.mybirdfire.com", size=1024, border=6) | |
# 2) edges for canny CN | |
pipe, canny = _load_sdxl_dual() | |
edges = canny(qr, low_threshold=int(canny_low), high_threshold=int(canny_high)) | |
gen = torch.Generator(device=device).manual_seed(int(seed)) if int(seed)!=0 else None | |
# Control weights + schedule (canny, softedge) | |
cn_scales = [1.1, 0.6] | |
cn_start = [0.25, 0.00] | |
cn_end = [0.95, 1.00] | |
def run(): | |
img = pipe( | |
prompt=prompt, | |
negative_prompt=NEG, | |
image=[edges, qr], # canny first, softedge second | |
controlnet_conditioning_scale=cn_scales, | |
control_guidance_start=cn_start, | |
control_guidance_end=cn_end, | |
num_inference_steps=int(steps), | |
guidance_scale=float(guidance), | |
generator=gen | |
).images[0] | |
return img | |
if device in ("cuda", "mps"): | |
with torch.autocast(device): | |
return run() | |
return run() | |
# ========= UI ========= | |
with gr.Blocks() as demo: | |
gr.Markdown("## Stable Diffusion + QR Code + ControlNet") | |
with gr.Tab("Stable Diffusion (prompt → image)"): | |
prompt = gr.Textbox(label="Prompt", value="Sky, Moon, Bird, Blue, In the dark, Goddess, Sweet, Beautiful, Fantasy, Art, Anime") | |
negative = gr.Textbox(label="Negative Prompt", value="lowres, bad anatomy, worst quality") | |
steps = gr.Slider(10, 50, value=30, label="Steps", step=1) | |
cfg = gr.Slider(1, 12, value=7.0, label="Guidance Scale", step=0.1) | |
seed = gr.Number(value=0, label="Seed (0 = random)", precision=0) | |
out_sd = gr.Image(label="Generated Image") | |
gr.Button("Generate").click(sd_generate, [prompt, negative, steps, cfg, seed], out_sd) | |
with gr.Tab("QR Maker (mybirdfire)"): | |
url = gr.Textbox(label="URL/Text", value="http://www.mybirdfire.com") | |
size = gr.Slider(256, 1024, value=512, step=64, label="Size (px)") | |
quiet = gr.Slider(0, 8, value=4, step=1, label="Border (quiet zone)") | |
out_qr = gr.Image(label="QR Code", type="pil") | |
gr.Button("Generate QR").click(make_qr, [url, size, quiet], out_qr) | |
with gr.Tab("QR Stylizer (SDXL canny + softedge)"): | |
p = gr.Textbox(label="Prompt", value="Sky, Moon, Bird, Blue, In the dark, Goddess, Sweet, Beautiful, Fantasy, Art, Anime") | |
st = gr.Slider(20, 40, 28, step=1, label="Steps") | |
cfg = gr.Slider(4.5, 9.0, 7.0, step=0.1, label="CFG") | |
sd = gr.Number(value=1470713301, label="Seed", precision=0) | |
cl = gr.Slider(0, 255, 80, step=1, label="Canny low") | |
ch = gr.Slider(0, 255, 160, step=1, label="Canny high") | |
out = gr.Image(label="Stylized QR (SDXL)") | |
gr.Button("Stylize").click(stylize_qr_sdxl, [p, st, cfg, sd, cl, ch], out) | |
if __name__ == "__main__": | |
demo.launch() | |