Spaces:
Sleeping
Sleeping
import gradio as gr | |
import torch | |
from diffusers import StableDiffusionPipeline | |
from PIL import Image | |
import qrcode | |
from qrcode.constants import ERROR_CORRECT_H | |
# ========= device/dtype ========= | |
device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu" | |
dtype = torch.float16 if device != "cpu" else torch.float32 | |
# ========= SD 1.5 (prompt-only) ========= | |
sd_pipe = StableDiffusionPipeline.from_pretrained( | |
"runwayml/stable-diffusion-v1-5", | |
torch_dtype=dtype | |
).to(device) | |
def sd_generate(prompt, negative, steps, guidance, seed): | |
gen = torch.Generator(device=device).manual_seed(int(seed)) if int(seed) != 0 else None | |
def run(): | |
return sd_pipe( | |
prompt, | |
negative_prompt=negative or "", | |
num_inference_steps=int(steps), | |
guidance_scale=float(guidance), | |
generator=gen | |
).images[0] | |
if device in ("cuda", "mps"): | |
with torch.autocast(device): | |
return run() | |
return run() | |
# ========= QR Maker ========= | |
def make_qr(url: str = "http://www.mybirdfire.com", size: int = 512, border: int = 4) -> Image.Image: | |
qr = qrcode.QRCode( | |
version=None, | |
error_correction=ERROR_CORRECT_H, # highest EC | |
box_size=10, | |
border=border | |
) | |
qr.add_data(url.strip()) | |
qr.make(fit=True) | |
img = qr.make_image(fill_color="black", back_color="white").convert("RGB") | |
return img.resize((size, size), resample=Image.NEAREST) | |
# ========= SD1.5 ControlNet stylizer (canny + tile) ========= | |
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel | |
from diffusers.schedulers.scheduling_euler_discrete import EulerDiscreteScheduler | |
from controlnet_aux import CannyDetector | |
BASE_15 = "runwayml/stable-diffusion-v1-5" | |
CN_CANNY_15 = "lllyasviel/sd-controlnet-canny" | |
CN_TILE_15 = "lllyasviel/control_v11f1e_sd15_tile" | |
_cn = {"pipe": None} | |
def _load_sd15_dual(): | |
if _cn["pipe"] is None: | |
canny = ControlNetModel.from_pretrained(CN_CANNY_15, torch_dtype=dtype) | |
tile = ControlNetModel.from_pretrained(CN_TILE_15, torch_dtype=dtype) | |
pipe = StableDiffusionControlNetPipeline.from_pretrained( | |
BASE_15, controlnet=[canny, tile], torch_dtype=dtype, safety_checker=None | |
).to(device) | |
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config) # Sampler: Euler | |
pipe.enable_attention_slicing() | |
pipe.enable_vae_slicing() | |
_cn["pipe"] = pipe | |
_cn["canny_aux"] = CannyDetector() | |
return _cn["pipe"], _cn["canny_aux"] | |
NEG_DEFAULT = "lowres, low contrast, blurry, jpeg artifacts, worst quality, bad anatomy, extra digits" | |
def stylize_qr_sd15(prompt: str, negative: str, steps: int, guidance: float, seed: int, | |
canny_low: int, canny_high: int, border: int): | |
# Make fresh QR each time | |
qr_img = make_qr("http://www.mybirdfire.com", size=512, border=int(border)) | |
pipe, canny = _load_sd15_dual() | |
edges = canny(qr_img, low_threshold=int(canny_low), high_threshold=int(canny_high)) | |
gen = torch.Generator(device=device).manual_seed(int(seed)) if int(seed) != 0 else None | |
# Control weights (canny, tile). Tune if too “lego” or too artsy. | |
cn_scales = [1.2, 0.6] | |
def run(): | |
return pipe( | |
prompt=str(prompt), | |
negative_prompt=negative or NEG_DEFAULT, | |
image=[edges, qr_img], # canny first, tile second | |
controlnet_conditioning_scale=cn_scales, | |
num_inference_steps=int(steps), | |
guidance_scale=float(guidance), | |
generator=gen | |
).images[0] | |
if device in ("cuda", "mps"): | |
with torch.autocast(device): | |
return run() | |
return run() | |
# ========= UI ========= | |
with gr.Blocks() as demo: | |
gr.Markdown("## Stable Diffusion + QR Code + ControlNet (SD1.5)") | |
with gr.Tab("Stable Diffusion (prompt → image)"): | |
prompt = gr.Textbox(label="Prompt", value="Sky, Moon, Bird, Blue, In the dark, Goddess, Sweet, Beautiful, Fantasy, Art, Anime") | |
negative = gr.Textbox(label="Negative Prompt", value="lowres, bad anatomy, worst quality") | |
steps = gr.Slider(10, 50, value=30, label="Steps", step=1) | |
cfg = gr.Slider(1, 12, value=7.0, label="Guidance Scale", step=0.1) | |
seed = gr.Number(value=0, label="Seed (0 = random)", precision=0) | |
out_sd = gr.Image(label="Generated Image") | |
gr.Button("Generate").click(sd_generate, [prompt, negative, steps, cfg, seed], out_sd) | |
with gr.Tab("QR Maker (mybirdfire)"): | |
url = gr.Textbox(label="URL/Text", value="http://www.mybirdfire.com") | |
size = gr.Slider(256, 1024, value=512, step=64, label="Size (px)") | |
quiet = gr.Slider(0, 8, value=4, step=1, label="Border (quiet zone)") | |
out_qr = gr.Image(label="QR Code", type="pil") | |
gr.Button("Generate QR").click(make_qr, [url, size, quiet], out_qr) | |
with gr.Tab("QR Stylizer (SD1.5 canny + tile, Euler)"): | |
s_prompt = gr.Textbox(label="Style Prompt", value="Sky, Moon, Bird, Blue, In the dark, Goddess, Sweet, Beautiful, Fantasy, Art, Anime") | |
s_negative = gr.Textbox(label="Negative Prompt", value=NEG_DEFAULT) | |
s_steps = gr.Slider(10, 50, value=28, label="Steps", step=1) | |
s_cfg = gr.Slider(1, 12, value=7.0, label="CFG", step=0.1) | |
s_seed = gr.Number(value=1470713301, label="Seed", precision=0) | |
canny_l = gr.Slider(0, 255, value=80, step=1, label="Canny low") | |
canny_h = gr.Slider(0, 255, value=160, step=1, label="Canny high") | |
s_border = gr.Slider(2, 10, value=6, step=1, label="QR border") | |
out_styl = gr.Image(label="Stylized QR") | |
gr.Button("Stylize").click( | |
stylize_qr_sd15, | |
[s_prompt, s_negative, s_steps, s_cfg, s_seed, canny_l, canny_h, s_border], | |
out_styl | |
) | |
if __name__ == "__main__": | |
demo.launch() | |