Tanut commited on
Commit
51d9f34
·
1 Parent(s): 1fc8d06
Files changed (1) hide show
  1. app.py +49 -102
app.py CHANGED
@@ -1,108 +1,55 @@
1
- # import gradio as gr
2
- # import torch
3
- # from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
4
- # from PIL import Image
5
- # import base64
6
- # from io import BytesIO
7
-
8
- # # You can change these:
9
- # BASE_MODEL = "runwayml/stable-diffusion-v1-5"
10
- # CONTROLNET_ID = "lllyasviel/sd-controlnet-canny" # placeholder; change to a QR-focused ControlNet if you have one
11
-
12
- # device = "cuda" if torch.cuda.is_available() else "cpu"
13
-
14
- # controlnet = ControlNetModel.from_pretrained(
15
- # CONTROLNET_ID, torch_dtype=torch.float16 if device=="cuda" else torch.float32
16
- # )
17
-
18
- # pipe = StableDiffusionControlNetPipeline.from_pretrained(
19
- # BASE_MODEL,
20
- # controlnet=controlnet,
21
- # torch_dtype=torch.float16 if device=="cuda" else torch.float32,
22
- # safety_checker=None
23
- # )
24
- # pipe.to(device)
25
-
26
- # def generate(prompt, control_image, guidance_scale=7.5, steps=30, seed=0):
27
- # print("API called:", type(control_image))
28
- # generator = torch.Generator(device=device).manual_seed(int(seed)) if seed else None
29
- # img = pipe(
30
- # prompt=prompt,
31
- # image=control_image,
32
- # num_inference_steps=int(steps),
33
- # guidance_scale=float(guidance_scale),
34
- # generator=generator
35
- # ).images[0]
36
- # return img
37
-
38
- # with gr.Blocks() as demo:
39
- # gr.Markdown("# ControlNet Image Generator")
40
- # with gr.Row():
41
- # prompt = gr.Textbox(label="Prompt", value="A futuristic poster, high detail")
42
- # seed = gr.Number(label="Seed (0=random)", value=0)
43
- # with gr.Row():
44
- # control = gr.Image(type="pil", label="Control image (e.g., QR or edge map)")
45
- # steps = gr.Slider(10, 50, 30, step=1, label="Steps")
46
- # guidance = gr.Slider(1.0, 12.0, 7.5, step=0.1, label="Guidance scale")
47
- # out = gr.Image(label="Result")
48
-
49
- # btn = gr.Button("Generate")
50
- # btn.click(generate, [prompt, control, guidance, steps, seed], out)
51
-
52
- # # Enable simple API use
53
- # gr.Examples([], inputs=[prompt, control, guidance, steps, seed], outputs=out)
54
-
55
- # demo.launch()
56
-
57
- # app.py — minimal, API-stable echo server + Gradio UI
58
- import base64, io
59
- from typing import List, Any
60
- from PIL import Image
61
  import gradio as gr
62
- from fastapi import FastAPI
63
- from pydantic import BaseModel
64
-
65
- # ---- helpers ----
66
- def data_url_to_pil(data_url: str) -> Image.Image:
67
- # expects "data:image/<ext>;base64,<...>"
68
- b64 = data_url.split(",", 1)[1]
69
- return Image.open(io.BytesIO(base64.b64decode(b64))).convert("RGB")
70
 
71
- def pil_to_data_url(img: Image.Image) -> str:
72
- buf = io.BytesIO()
73
- img.save(buf, format="PNG")
74
- return "data:image/png;base64," + base64.b64encode(buf.getvalue()).decode()
75
 
76
- # ---- your model fn (for now just echo control image) ----
77
- def generate(prompt: str, control_image: Image.Image, guidance: float, steps: int, seed: int):
78
- # TODO: replace with ControlNet pipeline call
79
- return control_image
80
 
81
- # ---- Gradio UI (not required for API, but nice to see) ----
82
- demo = gr.Interface(
83
- fn=generate,
84
- inputs=[
85
- gr.Textbox(label="Prompt", value="High-quality artistic style, preserve structure"),
86
- gr.Image(type="pil", label="Control Image (PNG/JPG)"),
87
- gr.Slider(1, 12, 7.5, step=0.1, label="Guidance scale"),
88
- gr.Slider(10, 50, 30, step=1, label="Steps"),
89
- gr.Number(0, label="Seed"),
90
- ],
91
- outputs=gr.Image(label="Result"),
92
  )
93
 
94
- # ---- FastAPI endpoint (stable path for Postman/Next.js) ----
95
- app = FastAPI()
96
-
97
- class PredictIn(BaseModel):
98
- data: List[Any] # [prompt, controlImageBase64, guidance, steps, seed]
99
-
100
- @app.post("/api/predict/0")
101
- def predict(payload: PredictIn):
102
- prompt, control_b64, guidance, steps, seed = payload.data
103
- img = data_url_to_pil(control_b64) if isinstance(control_b64, str) else control_b64
104
- out = generate(str(prompt), img, float(guidance), int(steps), int(seed))
105
- return { "data": [ pil_to_data_url(out) ] }
106
-
107
- # mount Gradio at "/"
108
- app = gr.mount_gradio_app(app, demo, path="/")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
2
+ import torch
3
+ from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
4
+ from PIL import Image
5
+ import base64
6
+ from io import BytesIO
 
 
 
7
 
8
+ # You can change these:
9
+ BASE_MODEL = "runwayml/stable-diffusion-v1-5"
10
+ CONTROLNET_ID = "lllyasviel/sd-controlnet-canny" # placeholder; change to a QR-focused ControlNet if you have one
 
11
 
12
+ device = "cuda" if torch.cuda.is_available() else "cpu"
 
 
 
13
 
14
+ controlnet = ControlNetModel.from_pretrained(
15
+ CONTROLNET_ID, torch_dtype=torch.float16 if device=="cuda" else torch.float32
 
 
 
 
 
 
 
 
 
16
  )
17
 
18
+ pipe = StableDiffusionControlNetPipeline.from_pretrained(
19
+ BASE_MODEL,
20
+ controlnet=controlnet,
21
+ torch_dtype=torch.float16 if device=="cuda" else torch.float32,
22
+ safety_checker=None
23
+ )
24
+ pipe.to(device)
25
+
26
+ def generate(prompt, control_image, guidance_scale=7.5, steps=30, seed=0):
27
+ print("API called:", type(control_image))
28
+ generator = torch.Generator(device=device).manual_seed(int(seed)) if seed else None
29
+ img = pipe(
30
+ prompt=prompt,
31
+ image=control_image,
32
+ num_inference_steps=int(steps),
33
+ guidance_scale=float(guidance_scale),
34
+ generator=generator
35
+ ).images[0]
36
+ return img
37
+
38
+ with gr.Blocks() as demo:
39
+ gr.Markdown("# ControlNet Image Generator")
40
+ with gr.Row():
41
+ prompt = gr.Textbox(label="Prompt", value="A futuristic poster, high detail")
42
+ seed = gr.Number(label="Seed (0=random)", value=0)
43
+ with gr.Row():
44
+ control = gr.Image(type="pil", label="Control image (e.g., QR or edge map)")
45
+ steps = gr.Slider(10, 50, 30, step=1, label="Steps")
46
+ guidance = gr.Slider(1.0, 12.0, 7.5, step=0.1, label="Guidance scale")
47
+ out = gr.Image(label="Result")
48
+
49
+ btn = gr.Button("Generate")
50
+ btn.click(generate, [prompt, control, guidance, steps, seed], out)
51
+
52
+ # Enable simple API use
53
+ gr.Examples([], inputs=[prompt, control, guidance, steps, seed], outputs=out)
54
+
55
+ demo.launch()