Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
#10
by
linoyts
HF Staff
- opened
app.py
CHANGED
@@ -38,7 +38,6 @@ with open("flux_loras.json", "r") as file:
|
|
38 |
]
|
39 |
print(f"Loaded {len(flux_loras_raw)} LoRAs from JSON")
|
40 |
# Global variables for LoRA management
|
41 |
-
current_lora = None
|
42 |
lora_cache = {}
|
43 |
|
44 |
def load_lora_weights(repo_id, weights_filename):
|
@@ -144,7 +143,7 @@ def infer_with_lora_wrapper(input_image, prompt, selected_index, lora_state, cus
|
|
144 |
@spaces.GPU
|
145 |
def infer_with_lora(input_image, prompt, selected_index, lora_state, custom_lora, seed=42, randomize_seed=False, guidance_scale=2.5, lora_scale=1.0, portrait_mode=False, flux_loras=None, progress=gr.Progress(track_tqdm=True)):
|
146 |
"""Generate image with selected LoRA"""
|
147 |
-
global
|
148 |
|
149 |
if randomize_seed:
|
150 |
seed = random.randint(0, MAX_SEED)
|
@@ -157,10 +156,10 @@ def infer_with_lora(input_image, prompt, selected_index, lora_state, custom_lora
|
|
157 |
lora_to_use = flux_loras[selected_index]
|
158 |
print(f"Loaded {len(flux_loras)} LoRAs from JSON")
|
159 |
# Load LoRA if needed
|
160 |
-
print(f"LoRA to use: {lora_to_use}
|
161 |
-
if lora_to_use
|
162 |
try:
|
163 |
-
if
|
164 |
pipe.unload_lora_weights()
|
165 |
|
166 |
lora_path = load_lora_weights(lora_to_use["repo"], lora_to_use["weights"])
|
@@ -168,14 +167,9 @@ def infer_with_lora(input_image, prompt, selected_index, lora_state, custom_lora
|
|
168 |
pipe.load_lora_weights(lora_path, adapter_name="selected_lora")
|
169 |
pipe.set_adapters(["selected_lora"], adapter_weights=[lora_scale])
|
170 |
print(f"loaded: {lora_path} with scale {lora_scale}")
|
171 |
-
current_lora = lora_to_use
|
172 |
|
173 |
except Exception as e:
|
174 |
print(f"Error loading LoRA: {e}")
|
175 |
-
# Continue without LoRA
|
176 |
-
elif lora_scale != lora_state:
|
177 |
-
print(f"using already loaded lora: {lora_to_use}, udpated {lora_scale} based on user preference")
|
178 |
-
pipe.set_adapters(["selected_lora"], adapter_weights=[lora_scale])
|
179 |
|
180 |
|
181 |
input_image = input_image.convert("RGB")
|
|
|
38 |
]
|
39 |
print(f"Loaded {len(flux_loras_raw)} LoRAs from JSON")
|
40 |
# Global variables for LoRA management
|
|
|
41 |
lora_cache = {}
|
42 |
|
43 |
def load_lora_weights(repo_id, weights_filename):
|
|
|
143 |
@spaces.GPU
|
144 |
def infer_with_lora(input_image, prompt, selected_index, lora_state, custom_lora, seed=42, randomize_seed=False, guidance_scale=2.5, lora_scale=1.0, portrait_mode=False, flux_loras=None, progress=gr.Progress(track_tqdm=True)):
|
145 |
"""Generate image with selected LoRA"""
|
146 |
+
global pipe
|
147 |
|
148 |
if randomize_seed:
|
149 |
seed = random.randint(0, MAX_SEED)
|
|
|
156 |
lora_to_use = flux_loras[selected_index]
|
157 |
print(f"Loaded {len(flux_loras)} LoRAs from JSON")
|
158 |
# Load LoRA if needed
|
159 |
+
print(f"LoRA to use: {lora_to_use}")
|
160 |
+
if lora_to_use:
|
161 |
try:
|
162 |
+
if "selected_lora" in pipe.get_active_adapters():
|
163 |
pipe.unload_lora_weights()
|
164 |
|
165 |
lora_path = load_lora_weights(lora_to_use["repo"], lora_to_use["weights"])
|
|
|
167 |
pipe.load_lora_weights(lora_path, adapter_name="selected_lora")
|
168 |
pipe.set_adapters(["selected_lora"], adapter_weights=[lora_scale])
|
169 |
print(f"loaded: {lora_path} with scale {lora_scale}")
|
|
|
170 |
|
171 |
except Exception as e:
|
172 |
print(f"Error loading LoRA: {e}")
|
|
|
|
|
|
|
|
|
173 |
|
174 |
|
175 |
input_image = input_image.convert("RGB")
|