CP-Bench-Leaderboard / backup_app_.py
kostis-init's picture
replace with simpler app
b5712a3
raw
history blame
13.7 kB
import gradio as gr
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download
import shutil # For file operations
from pathlib import Path # For path manipulations
from src.about import (
CITATION_BUTTON_LABEL,
CITATION_BUTTON_TEXT,
EVALUATION_QUEUE_TEXT,
INTRODUCTION_TEXT,
LLM_BENCHMARKS_TEXT,
TITLE,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
BENCHMARK_COLS,
COLS,
EVAL_COLS,
EVAL_TYPES,
AutoEvalColumn,
ModelType,
fields,
WeightType,
Precision
)
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
from src.populate import get_evaluation_queue_df, get_leaderboard_df
from src.submission.submit import add_new_eval
def restart_space():
API.restart_space(repo_id=REPO_ID)
### Space initialisation
try:
print(EVAL_REQUESTS_PATH)
snapshot_download(
repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
)
except Exception:
restart_space()
try:
print(EVAL_RESULTS_PATH)
snapshot_download(
repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
)
except Exception:
restart_space()
LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
(
finished_eval_queue_df,
running_eval_queue_df,
pending_eval_queue_df,
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
def init_leaderboard(dataframe):
if dataframe is None or dataframe.empty:
raise ValueError("Leaderboard DataFrame is empty or None.")
return Leaderboard(
value=dataframe,
datatype=[c.type for c in fields(AutoEvalColumn)],
select_columns=SelectColumns(
default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default],
cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden],
label="Select Columns to Display:",
),
search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.license.name],
hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden],
filter_columns=[
ColumnFilter(AutoEvalColumn.model_type.name, type="checkboxgroup", label="Model types"),
ColumnFilter(AutoEvalColumn.precision.name, type="checkboxgroup", label="Precision"),
ColumnFilter(
AutoEvalColumn.params.name,
type="slider",
min=0.01,
max=150,
label="Select the number of parameters (B)",
),
ColumnFilter(
AutoEvalColumn.still_on_hub.name, type="boolean", label="Deleted/incomplete", default=True
),
],
bool_checkboxgroup_label="Hide models",
interactive=False,
)
# --- Function to handle the uploaded directory ---
def save_uploaded_models(files):
if files:
saved_paths = []
# 'files' will be a list of temporary file paths when file_count="directory"
# The actual files are in a temporary directory.
# We want to recreate the structure within UPLOAD_DIR.
# Assuming 'files' contains full paths to files within a single uploaded directory
# We need to determine the base name of the uploaded directory.
# Gradio often provides a list of file objects. Each object has a .name attribute (path).
# Example: if user uploads "my_run_1" containing "model.txt" and "config.json"
# files might be like: ['/tmp/gradio/somerandomhash/my_run_1/model.txt', '/tmp/gradio/somerandomhash/my_run_1/config.json']
# Or it might be a list of tempfile._TemporaryFileWrapper objects.
if not isinstance(files, list):
files = [files] # Ensure it's a list
# Let's assume `files` is a list of `tempfile._TemporaryFileWrapper` or similar
# where `file_obj.name` gives the temporary path to each file.
# Get the common parent directory from the temporary paths if possible,
# or derive the uploaded folder name from one of the paths.
# This part can be tricky depending on exactly how Gradio passes directory uploads.
# A robust way is to create a unique sub-directory for each upload.
# Let's get the name of the directory the user uploaded.
# With file_count="directory", `files` is a list of file paths.
# We can infer the uploaded directory name from the first file path.
if files:
first_file_path = Path(files[0].name if hasattr(files[0], 'name') else files[0])
# The uploaded directory name would be the parent of the files if Gradio flattens it,
# or the parent of the temp directory housing the uploaded folder.
# For simplicity, let's try to get the original uploaded folder name.
# Gradio's `UploadButton` usually puts uploaded directories into a subdirectory
# within the temp space that has the same name as the original uploaded directory.
# e.g., if user uploads "my_models_run1", files might be in /tmp/somehash/my_models_run1/file1.txt
# A common approach: find the common prefix of all file paths,
# then determine the uploaded directory's name from that.
# However, Gradio's behavior is that `files` is a list of file objects,
# each with a `.name` attribute that is the full path to a temporary file.
# These temporary files are often placed inside a directory that *itself*
# represents the uploaded directory structure.
# Let's assume the user uploaded a directory named "user_uploaded_dir"
# And it contains "model1.txt" and "model2.txt"
# `files` might be `[<temp_file_obj_for_model1>, <temp_file_obj_for_model2>]`
# `files[0].name` might be `/tmp/gradio_guid/user_uploaded_dir/model1.txt`
# We need to extract "user_uploaded_dir"
# And then recreate this structure under UPLOAD_DIR.
# Assuming the first file gives us a good representation of the path structure.
temp_file_path = Path(files[0].name if hasattr(files[0], 'name') else files[0])
# The uploaded directory's name is usually the second to last part of the temp path
# e.g. /tmp/tmpxyz/uploaded_dir_name/file.txt -> "uploaded_dir_name"
uploaded_dir_name = temp_file_path.parent.name
destination_folder_path = Path(UPLOAD_DIR) / uploaded_dir_name
os.makedirs(destination_folder_path, exist_ok=True)
for uploaded_file_obj in files:
# Get the path to the temporary file
temp_path_str = uploaded_file_obj.name
temp_path = Path(temp_path_str)
# Get the original filename (relative to the uploaded directory)
# This should be just the filename itself if Gradio preserves the structure
# correctly inside the temp directory for the uploaded folder.
original_filename = temp_path.name # e.g., "model1.txt"
destination_file_path = destination_folder_path / original_filename
try:
shutil.copy(temp_path_str, destination_file_path)
saved_paths.append(str(destination_file_path))
except Exception as e:
print(f"Error copying {temp_path_str} to {destination_file_path}: {e}")
return f"Error saving files: {e}"
if saved_paths:
return f"Successfully uploaded and saved models to: {destination_folder_path}"
else:
return "No files were saved."
return "No files uploaded."
# demo = gr.Blocks(css=custom_css)
demo = gr.Blocks()
with demo:
gr.HTML(TITLE)
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("πŸ… LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
leaderboard = init_leaderboard(LEADERBOARD_DF)
with gr.TabItem("πŸ“ About", elem_id="llm-benchmark-tab-table", id=2):
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
with gr.TabItem("πŸš€ Simple Submit here!", elem_id="llm-benchmark-tab-table", id=4):
gr.Markdown(
"## Submit your generated models here!",
elem_classes="markdown-text",
)
upload_button = gr.UploadButton(
label="Upload your generated models (only directories accepted)",
size="lg",
file_count="directory",
elem_id="upload-button",
)
# Add an output component to display the result of the upload
upload_status = gr.Textbox(label="Upload Status", interactive=False)
# Connect the upload_button to the save_uploaded_models function
upload_button.upload(save_uploaded_models, upload_button, upload_status)
with gr.TabItem("πŸš€ Submit here!", elem_id="llm-benchmark-tab-table", id=3):
with gr.Column():
with gr.Row():
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
with gr.Column():
with gr.Accordion(
f"βœ… Finished Evaluations ({len(finished_eval_queue_df)})",
open=False,
):
with gr.Row():
finished_eval_table = gr.components.Dataframe(
value=finished_eval_queue_df,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
row_count=5,
)
with gr.Accordion(
f"πŸ”„ Running Evaluation Queue ({len(running_eval_queue_df)})",
open=False,
):
with gr.Row():
running_eval_table = gr.components.Dataframe(
value=running_eval_queue_df,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
row_count=5,
)
with gr.Accordion(
f"⏳ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
open=False,
):
with gr.Row():
pending_eval_table = gr.components.Dataframe(
value=pending_eval_queue_df,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
row_count=5,
)
with gr.Row():
gr.Markdown("# βœ‰οΈβœ¨ Submit your model here!", elem_classes="markdown-text")
with gr.Row():
with gr.Column():
model_name_textbox = gr.Textbox(label="Model name")
revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
model_type = gr.Dropdown(
choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
label="Model type",
multiselect=False,
value=None,
interactive=True,
)
with gr.Column():
precision = gr.Dropdown(
choices=[i.value.name for i in Precision if i != Precision.Unknown],
label="Precision",
multiselect=False,
value="float16",
interactive=True,
)
weight_type = gr.Dropdown(
choices=[i.value.name for i in WeightType],
label="Weights type",
multiselect=False,
value="Original",
interactive=True,
)
base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
submit_button = gr.Button("Submit Eval")
submission_result = gr.Markdown()
submit_button.click(
add_new_eval,
[
model_name_textbox,
base_model_name_textbox,
revision_name_textbox,
precision,
weight_type,
model_type,
],
submission_result,
)
with gr.Row():
with gr.Accordion("πŸ“™ Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
lines=20,
elem_id="citation-button",
show_copy_button=True,
)
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
demo.queue(default_concurrency_limit=40).launch()